
Floating–Point Fused Multiply–Add under HUB
Format

Javier Hormigo, Julio Villalba-Moreno, Sonia Gonzalez-Navarro
Department of Computer Architecture, Andalucia Tech, University of Malaga , Spain

Email: fjhormigo, jvillalba, sgn @uma.es

Abstract—The Half-Unit-Biased (HUB) format has interesting
advantages for implementing floating-point arithmetic which
has been proved for the four basic arithmetic operations as
well as square root. Nevertheless, although Floating-point Fused
Multiply-add (FMA) operation (AxB + C) is one of the most
important and complex arithmetic instructions in modern proces-
sors, FMA operation for HUB numbers has not been confronted
yet. In this paper, we present a design to deal with this operation
under HUB format. The key points to turn the conventional FMA
architecture into a HUB unit are explained. Comparing the ASIC
implementation of a HUB FMA unit with the conventional one,
the former reduces the required area and power up to 38% and
35%, respectively, for single-precision. For BFloat16, the HUB
FMA increases the speed a 15%, and even then, reduces the area
and power by 26% and 12%, respectively.

Index Terms—Fused multiplication-addition, HUB format,
DSP applications, Deep-learning

I. INTRODUCTION

The spectacular growth of the deep-learning applications
and their need for vast computation resources has encouraged
researchers to explore new formats other than the standard
IEEE in order to improve performance and reduce hardware
cost. For example, Bfloat16 is an emerging floating-point
format of 16 bits tailored specifically for high-performance
processing of Neural Networks and it is expected to be
implemented on the new generation of processors [1]. In [1]
the authors propose a new SIMD instruction for accelerating
matrix multiplication where the operands meet the Bfloat16
format. They implement the FMA operation and propose
the use of floating-point round-to-odd mode to reduce the
hardware cost of implementing the round-to-nearest mode.
Similarly, in [2], DLfloat (another 16-bit floating-point format)
is proposed to implement Deep-Learning accelerators. To re-
duce hardware cost and improve performance, DLfloat, besides
changing the number of bits used to represent the exponent and
the significand, basically simplifies many of the characteristics
of the IEEE floating-point standard by using only round-to-
nearest up and eliminating denormals and some special cases.
Therefore, there is a clear tendency to use new floating-point
formats that simplify the hardware implementation with the
goal of improving the performance of these current emerging
applications.

Following the same trend, in the literature, we can also
find the HUB approach [3]. HUB is the acronym of Half-

This work has been supported by the Ministry of Science and Innovation
of Spain under project CICYT TIN2016-80920R

Unit-Biased format since it is based on shifting conventional
numbers by half Unit-in-the-Last-Place (ULP). HUB approach
can be applied to any floating-point format, which allows
implementing two’s complement by bit-wise inversion and
the rounding to nearest by simple truncation. Hence, applying
the HUB approach to an arithmetic unit simplifies the logic
which reduces both area and delay, while it keeps the same
precision [4]. Moreover, the HUB approach is compatible with
the new proposed formats, such as BFloat16 or DLFloat, and
could increase their advantages.

The advantages of the HUB approach have been validated
for the four basic arithmetic operations as well as square
root [4], [5], [6]. However, the fused multiply-add operation
(FMA) for HUB numbers has not been studied yet. The FMA
is a key operation in many current applications, from scientific
computation to deep learning algorithms [7]. In fact, most
modern processors have this operation in their Instruction
Set Architecture (ISA) [8], [9]. This operation performs the
multiplication of two floating-point operands and adds a third
one to the result of the multiplication (AxB + C). The unified
architecture has two main advantages, namely the operation
is performed with only one rounding instead of two [10], and
there is a reduction in the delay and hardware required by
sharing several components [11].

In this paper, we design and analyze a floating-point FMA
architecture to support HUB numbers. We show that it saves
area and power consumption in comparison with conventional
implementation when targeting the same clock frequency.
Furthermore, it can reach higher frequencies.

From now on, we denote ”conventional” to those numbers,
formats, or architectures that, although not being standard
compliant, follow similar rules and are not HUB.

II. THE HUB FORMAT

In this section, we summarize the HUB format defined in [3]
and particularize it for the floating-point normalized HUB
numbers. The mathematical fundamentals and a deep analysis
of the HUB format, as well as the addition and multiplication
operations under this format, can be found in [3] and [4].

From a format point of view, a normalized floating-point
HUB number is similar to its IEEE counterpart but the
significand is HUB. Thus, the only difference is the format
of the significand. Without any loss of generality, we consider
radix-2 in this paper.

Let x denote a normalized floating-point HUB number such
that

x = (−1)sM2e (1)

where s is the sign bit, e is the exponent, and the significand
M is normalized (1 < M < 2) and has p bit of precision such
that

M =

[
p−1∑
i=0

mi · 2−i
]
+ 2−p (2)

where mi = {0, 1} with m0 = 1 (normalized). We can see
that the term 2−p in expression (2) is the bias regarding the
standard IEEE floating-point representation. Let us rewrite
expression (2) as

M = M ′ + 2−p (3)

where M ′ is

M ′ =

[
p−1∑
i=0

mi · 2−i
]

(4)

We can see that M ′ is the value of the significand in the
standard representation so that the HUB significand is similar
to that of the standard except that the HUB number has a bias
of 2−p.

From expression (2) we deduce that the form of the signif-
icand of a HUB number is

M = 1.m1m2 · · ·mp−11 (5)

where the least significant bit (LSB) is always 1 due to the
bias. This LSB is denoted ILSB (Implicit Least Significant Bit)
since it is a constant and implicit when represented (similar
to the implicit leading bit of the standard). Consequently, the
HUB format has two implicit bits: the MSB and the LSB.

The set of the exactly represented numbers (ERN) for the
standard representation and for its counterpart HUB one (that
is, with the same precision) are disjoint. This is shown in Fig-
ure 1.a where we can see the relative position of consecutive
ERNs for both the standard (white circle) and the HUB formats
(black circle). We can observe that both representations keep
the same distance between consecutive numbers (that is, the
same precision) and that the distance between a standard and a
HUB number is just half ulp. Moreover, the amount of ERNs
for both representations is also the same.

Figure 1.b shows a simple example for ulp = 2−3, where
we can see that consecutive HUB numbers (5 bits, 1.0001,
1.0011, 1.0101, ...) have all of them their LSB=1 (the ILSB).
In comparison with the standard (4 bits, 1.000, 1.001, 1.010,
...) shown in this figure, the HUB numbers have one extra bit
(just the ILSB=1). This means that one extra bit is required
to operate with HUB numbers in general (for some operations
like addition with round to nearest this extra bit is compensated
with the lack of the rounding bit for HUB approach which
is not required to achieve round to nearest [3]). In short,
each HUB number is just in the middle point of two standard
numbers and both systems have the same precision.

Despite having an extra bit (the ILSB), this is not required
for storing since it is implicit. Thus, for the same precision,

Conventional ERN

2

−3
2

−f
2

1

2

−f
2 (ulp)

−f
2 (ulp)

1.000

1.0001

1.001 1.010 1.011 1.100 1.101

1.0011 1.0101 1.0111 1.1001 1.1011

a)

b)

HUB ERN

−3

Fig. 1. ERNs for the conventional and the HUB systems, STEP=2−3

both representations require the same storage. For example, the
single-precision FP IEEE has 24 bits of precision (significand
of 24 bits), 23 out of them are used for storage and 24 for
operating. The counterpart HUB format for the same precision
(24 bits) has 25 bits for operating and 23 bits for storage (that
is, the same storage requirement [3]).

Some of the main advantages of the HUB format are:
• Round to nearest mode is carried out by truncation. This

is one of the most important features of the format. Let x
denote a non HUB number with n significant bits (p < n).
We want to obtain the nearest p-bit HUB number to x.
The nearest HUB number is obtained by truncation of
the p MSBs of x. Thus, the round to nearest mode is
implemented by truncation of the original number (see
[3]). Now we present a simple example:
x is a positive non HUB number (9 bits)
RN(x):Nearest HUB number, 4 bit precis.
x=1.0110 1000 -> RN(x)=1.01101
Operation:
x -> 1.0110 0110
trunc. -> 1.0110
RN(x) -> 1.01101

• The two’s complement of a HUB number is obtained by
inversion of all bits of M ′, which is a bit-wise operation.
Thus, carry propagation is prevented when obtaining the
two’s complement. This is due to the fact that the ILSB is
1. When obtaining the two’s complement, first we invert
all bits and then add 1 to the LSB position. In our case,
after inverting the ILSB we have a 0, and the addition
of 1 at this position changes it to 1 again with no carry
propagation to the rest of the bits. Next example shows
it:
x is a HUB number
x=01.0111 -> 2’c(x)=10.1001
2’C(x) operation:
invert -> 1 0.100 0
add 1 + 1

1 0.100 1

III. FMA ARCHITECTURE FOR CONVENTIONAL
REPRESENTATION

The first widely accepted FMA that was implemented on
an extended general-purpose processor was that of the IBM
RS/6000 [12]. The corresponding algorithm and architecture
for the standard representation are widely described and an-
alyzed in [13] and [14]. In this section, we present a basic
FMA architecture for conventional floating-point numbers
based on the guideline presented in [13] and [14]. The design
and implementation of this architecture are carried out for
comparison purposes since it is the base of that proposed in
Section IV for the HUB representation. We are aware that there
are some improved FMA architectures in the literature, but in
this work, we use a basic one to better illustrate the differences
between the conventional and the HUB approaches.

Assume that we want to perform the operation x·y+z where
x, y and z are conventional floating-point numbers. Consider
that the floating-point numbers have p bit precision such that

x =(−1)sxMx2
ex

y =(−1)syMy2
ey

z =(−1)szMz2
ez

(6)

where the significand M is normalized (1 ≤M < 2) and has
p bits. The operation x·y+z requires that the product x·y and
the addend z are aligned. From now on, ”product” denotes x·y
and ”addend” denotes z. The alignment is performed based on
the exponent difference as

d = ez − (ex + ey) (7)

The basic FMA architecture that we have implemented is
presented in Figure 2 where the shaded elements highlight
the main differences with the HUB design (explained in
next section). Now we explain the different elements of the
architecture as well as the operations that are carried out.

First, we have a multiplier that multiplies the significands
of the operands x and y (p-bit each one), which is Mx ·My .
This is implemented using partial product generation and a
compression tree. The output (2p bits) is obtained in carry-
save representation, as shown in Figure 2.

In parallel with the multiplier, the shifter of Figure 2 aligns
the addend. It operates on the significand of the addend Mz

(in fact the product is never shifted; all the involved shifts are
carried out over the addend). Now we analyze the different
alignment that this shifter has to perform.

Figure 3 shows the different cases of alignment for p = 5
bits. On the one hand, when the dominant term is the addend,
a left shift of the addend up to p+3 positions is possible. We
can see that there is a maximum gap of two bits, namely the
rounding bit (round-to-nearest is considered in this paper) and
the guard bit (used when normalization involves a left shift of
one position). Figure 3.a shows the maximum left shift when
normalization of the result is not required. Figure 3.b shows
the maximum left shift when the result needs a normalization
(guard bit is needed). If the addend is placed more than p+2

C

y

2p2p

2p

p+3

Mx

3p+2

Complementer

Invertsub

d Shifter

S
T

IC
K

Y

Mz

3p+3 3p+3

S
T

IC
K

Y

eyex

p

3:2 CSA

0...0

ROUNDING

2p

p

Multiplier

ADDER

2p sub
(carry in)

p

3p+2

Normalization

3p+3

(sign bit)

d

ez

S

M

Fig. 2. FMA basic architecture

positions to the right, the whole of the product is condensed
in a sticky bit.

On the other hand, when the dominant term is the product,
a right-shift of the addend up to 2p− 1 positions is involved,
as shown in Figure 3.c. Notice that all bits beyond the bound
of the product are condensed in the sticky bit, as shown in
Figure 3.c. Thus, a shift of the addend up to (p+3)+(2p−1) =
3p+2 positions is possible, as shown in Figure 3.d. Normally,
to avoid the complexity of the shifter with left/right shifts, a
hardwired left shift of p+ 3 of the addend is carried out, and
then the shifter operates only to the right.

After the shifter of Figure 2, an inverter operates if an ef-
fective subtraction is required, and the sign bit is incorporated
to the bus (p+ 3 bits, as shown in Figure 2).

The carry and sum words of the output of the multiplier

(d=p+3)

x x

1

2p

p

2p−1
Sticky

(d=−2p−1)

+/−

** *

m b

m c

m a

p+3

p

0

* R

0

Sticky

+/−

* *

*

p+3

x R

Sticky

−

0000001

1 *

c)Maximum right shift

(d=p+3)

GR

b) Maximum left shift and normalization required

2p

p

2p−1p+3

p

GR

3p+2

* *

* *

**

1 Append

.

*

Product

R Rounding bit
G Guard bit

Possible position of the leading bit

d) Total shift

a) Maximum left shift and normalization not required

2p

Fig. 3. Alignment for the conventional representation

are added with the 2p LSBs of the output of the conditional
inverter to generate a new carry-save number, which is con-
verter into conventional representation using a fast adder, as
shown in Figure 2.

The carry word of the 3:2 CSA is extended with the p+3
MSBs of the output of the conditional inverter and the sum
word of the 3:2 CSA is extended with 0s. The value of the
carry-in depends on the effective operation to complete the
two’s complement conversion of the addend.

At the output of the adder, the complementer is in charge
of obtaining the sign-magnitude version of the number in case
of having a negative number. After this, the normalization is
performed (and a possible sticky bit is generated). Finally, we
have the rounding process, which may require an addition for
rounding up. Moreover, in the worst case, this rounding up
may require a renormalization and an update of the exponent.

IV. FMA ARCHITECTURE FOR HUB NUMBERS

Assume that we want to perform the operation a·b+c where
a, b and c are floating-point HUB numbers. Let us consider
that the floating-point HUB numbers have p-bit precision such
that

a =(−1)saMa2
ea = (−1)sa(M ′a + 2−p)2ea

b =(−1)sbMb2
eb = (−1)sb(M ′b + 2−p)2eb

c =(−1)scMc2
ec = (−1)sc(M ′c + 2−p)2ec

(8)

where the significand M is the normalized HUB significand
with p bits of precision (see equations (2), (3) and (4)).
Figure 4 shows the proposed FMA HUB architecture.

2p+2

2p+2

ebea

d

ec

3p+43p+4

S
T

IC
K

Y

S
T

IC
K

Y

3p+3

Inverter 2

3p+3 (MSBs)

ROUNDING

M a
M c

p+1 p+1

2p+2 (LSBs)2p+2

2p+2

3p+43p+4

3p+4

3p+3

p+2

p+1

3:2 CSA

0...0

2p+2

Multiplier

ADDER

p

3p+4

2p+2

d Shifter

0
carry−in

sign bit

p+2

1 (LSB)

p

Normalization & truncation

sub Inverter 1

Complementer

M b

1

(ILSB)

2’complement (effect. sub.)

2’complement (when needed)

C S

2p+2

(MSBs)

Fig. 4. FMA HUB architecture

In this section we explain the proposed design and compare
it with the conventional architecture of Figure 2. In Figure 4
we have also pointed out in shadow the main hardware

elements that have been removed/modified from the classic
design. The elements that have been removed are the sticky
bit calculation, the rounding module and the complementer
(the latter is substituted by an inverter). The elements that
have been modified are related to the increase in the size of
some buses (normally increased by one bit due to the ILSB).
Let us note that to operate with a HUB number, generally, the
ILSB is explicitly included which turns the HUB number into
a conventional one [4]. The handling of the exponent is not
drawn in the figure since it is similar to that of the conventional
representation.

The multiplier of Figure 4 is similar to that of the conven-
tional in Figure 2. However, in this case, the input operands
have p + 1 bits (the extra bit is necessary to accommodate
the ILSB). Thus, for the same precision, this multiplier has
one extra bit per input operand when compared with the
conventional one. Nevertheless, the extra hardware required
when designing the multiplier is somehow mitigated since both
extra bits are always 1 (and thus the LSB of the product is
always 1).

When an effective subtraction is required, the two’s com-
plement of the subtrahend (that is, the addend c) is performed
simply by bit-wise inversion of M ′c, and the inverter 1 of
Figure 4 is in charge of doing it. Another consequence of
having HUB numbers is that the carry-in of the adder in
Figure 4 is 0 since the two’s complement operation is fully
completed after the inverter (in an effective subtraction).

The shifter is in charge of the alignment of the addend. The
sign bit and the ILSB are explicitly accommodated after the
inverter, producing a p + 2 bit input to the shifter, as shown
in Figure 4.

Now we analyze the maximum shift of the addend. On the
one hand, when the dominant term is the addend, a left shift of
the addend up to p+2 positions is possible as shown in Figure
5.a (in the conventional one this distance is p+3). Unlike the
conventional representation, in HUB representation no gap is
required between the addend and the product for the maximum
left shift (two-bit gap in the conventional one, the rounding
and guard bits, see Figure 3.a). The rounding bit is not needed
anymore since in HUB representation the round-to-nearest
mode is performed by truncation. In the case of maximum left
shift (p+2 bits) and under subtraction operation, the final result
is always normalized (unlike the conventional, a normalization
of one bit to the left is not required in HUB). Next, we prove
this. Figure 3.b shows the only case in which the MSB of the
result is fractional in the conventional representation (which
involves a further normalization). The counterpart situation
for HUB is shown in Figure 5.b, where we can see that
a carry propagation in subtraction is absorbed by the ILSB
of the addend and the result holds its MSB as an integer
(normalization is not required and thus the guard bit is not
needed).

In Figure 5.a, we can also see that all bits of the product
placed to the right of the ILSB position of the addend are
condensed in a sticky bit, which is always 1 since at least the
LSB of the product is always 1 (notice that the multiplication

of two HUB numbers produces a result whose LSB is 1).
Thus, another important consequence of working with HUB
representation is that the logic for calculation of the sticky bit
is not needed anymore, as shown in Figure 4.

On the other hand, when the dominant term is the product,
a right-shift of the addend up to 2p+ 1 positions is involved
(maximum right shift, see Figure 5.c). The bits of the addend
placed beyond the LSB of the product are condensed into a
sticky bit, which is always 1 due to the ILSB of the addend.
Thus, as in the case of the left shift, the calculation of the
sticky bit is not needed.

As consequence, the shifter has to be able to shift the addend
up to 3p+ 3 positions, as summarized in Figure 5.d.

2p+2

100001

000001

* * 1

1 * 1

* * 1

1

m a m b

m c

p+2

* 1

1
+/−

*
(d=p+2)

IL
S

B
IL

S
B

(d=p+2)

carry

2p+2

2p+1

+/−

** *

p

Sticky

1

1*

a) Maximum left shift

b) Proving that normalization is not required

c)Maximum right shift

2p

p

2p−1p+3

p

GR

3p+2

* *

* *

** Product

1 Append

.

* Possible position of the leading bit

d) Total shift

R Rounding bit

G Guard bit

(d=−2p−1)

becomes 1 (ILSB) Sticky

1

1

p

Sticky

Fig. 5. Alignments under HUB representation

The 3-2 CSA and adder of the HUB architecture are wider
than that of the conventional one due to the ILSB. In this case,
it involves an increase in area and delay that is compensated

with the savings of area and delay of the removed elements,
as proved in Section V.

Unlike in the conventional architecture, the conversion into
sign-magnitude for a negative result at the output of the adder
of Figure 4 is carried out simply by an inverter instead of a
complementer. Moreover, the LSB of the adder is bypassed
and connected to the LSB of the normalization module, as
shown in Figure 4. Let us explain in detail this issue. First let
us remind that the effective subtraction is always performed
by adding the product, which is a positive number, plus the
two’s complement of the addend. For example, if ab is the
product (ab is positive), and c is the addend (c is positive),
and we want to calculate R = c− ab, the actual operation in
the architecture is R = −(ab − c) (the sign is managed in a
separate logic). The value (ab − c) is obtained at the output
of the adder in Figure 4 (and also in the conventional one,
see Figure 2). Since the result has to be delivered in sign-
magnitude representation, the two’s complement of the result
R is required only if c > ab since the actual operation in the
adder is (ab− c). Next example shows it (worst case):

Operation required R=c-ab
Adder actual operation: ab-c=ab+2’C(c)
ab= 0 1.110 1111
c = 0 1.111 -> 2’C(c) = 1 0.001
R = 1 0.000 0001 (sign-magnitude)
Operation:

s
ab -> 0 1.110 1111
2’C(c) -> + 1 0.001

Adder output 1 1.111 1111
Inverter input: 1 1.111 111
Inverter output: 0 0.000 000
Norm. module input: 0 0.000 0001

Figure 6 shows the snapshot of this example in the architecture
of Figure 4. In this example c > ab and the adder output
(ab − c) has a negative number (1 1.111 1111). The LSB of
this amount is directly connected to the LSB of the input of
the normalization module, and the rest of the bits are inverted
and connected to the normalization module.

2’C(c) 1 0.001 0 1.110 1111

Inverter

ADDER

Normalization & truncation

1 1.111 111 1

1 1.111 111

0 0.000 000

0 0.000 000 1

ab

Fig. 6. Snapshot of the two’s complement at the inverter 2 of Figure 4 for
ab=01.110 1111 & c=01.111 (2’C(c)=10.001)

The normalization process is similar to the conventional
one: locate the position of the most significant 1, update the
exponent accordingly, and shift the value at the input to the
right until reaching the first 1 (a leading zero anticipator could
also be used).

Therefore, the result of the operation r = a · b+ c is a HUB
number such that

r = (−1)srMr2
er (9)

where the sign sr depends on the MSB of the output of the
adder and the sign of the three input operands ea, eb, ec, the
exponent er is obtained from the maximum of {ea + eb, ec}
plus the correction of the normalization, and Mr is composed
by the truncation of the p MSBs of the result after normaliza-
tion plus the ILSB (see equation (2)).

This result is already rounded since the nearest HUB
number to a number is obtained by truncation of the p MSBs
(for p-bit precision). Consequently, as shown in Figure 4,
no special hardware is required for rounding (unlike in the
conventional representation where a specific module is needed
for rounding, see Figure 2). This is one of the most important
advantages of working with HUB representation.

V. IMPLEMENTATION RESULTS AND COMPARISON

Both the proposed HUB floating-point FMA architecture,
along with an equivalent architecture for conventional floating-
point representation have been implemented using Verilog
and Synopsys DesignWare building blocks version H-2013.03-
DWBB 201303.2. These architectures only implement the
basic FMA operation, i.e., they do not consider special cases
(except zero) or exceptions, and denormals are flush to zero.
Including these features would affect both implementations
similarly, and thus, they do not contribute to the comparison.
Moreover, recent architectures tailored for deep learning, such
as in [1] and [2], avoid their implementation to reduce hard-
ware cost. On the other hand, we should also note that the
conventional architecture only implements rounding-to-nearest
tie-to-even to provide a fair comparison with the HUB version.

To measure the benefit of using HUB floating-point format
instead of the conventional one, both combinational archi-
tectures have been synthesized, and the results gathered for
comparison. For synthesizing, Synopsys Design Compiler H-
2013.03-SP2 and the TSMC 65nm library have been used.
We set ”typical-case” operating conditions in which the tem-
perature is 25ºC and voltage Vdd = 1.0V. Both architectures
have been synthesized for the same target clock frequencies,
and the area and power consumption have been compared.
Two different word-lengths have been analyzed: IEEE single-
precision (FP32) and the new BFloat16 format (BF16) for both
conventional and HUB formats. In the figures, IEEE-like FP32
and BF16 refer to conventional formats whereas HUB FP32
and HUB BF16 refer to their HUB counterparts.

Figure 7a and Figure 7b show the area and power results,
respectively, for single-precision. First, we can see that the
conventional architecture only reaches 500MHz, whereas the

50 150 250 350 450 550

Frequencies (MHz)

0.8

1

1.2

1.4

1.6

1.8

2

2.2
A

re
a

(
m

2
)

104

IEEE-like FP32
HUB FP32

(a) Area

50 150 250 350 450 550

Frequencies (MHz)

0

2

4

6

8

P
ow

er
 (

 m
W

)

IEEE-like FP32
HUB FP32

(b) Power consumption

Fig. 7. HUB and conventional FMA results for single-precision.

HUB one reaches 600MHz. That means a 20% of speedup.
This improvement is mostly because the HUB approach does
not require the rounding logic, which is in the critical path.
In Figure 7a, it is also observed that HUB architecture always
requires less area. This fact is much more evident for clock
frequencies above 350MHz. Regarding the power consump-
tion, the reduction achieved by the HUB approach is only
clearly seen for clock frequencies above 350MHz. For lower
frequencies, the power reduction varies ranging from 0% to
16% (see Figure 9b).

On the other hand, Figure 8a and Figure 8b show the area
and power results, respectively, corresponding to BFloat16 for
both conventional and HUB architectures. The advantage of
using the HUB approach for BFloat16 format is even greater
than for single-precision. Again, the HUB architecture reaches
higher clock frequencies and a significant area and power
reduction, especially for high frequencies. Even for 750MHz
the area and power of HUB architecture are significantly
lower than the one for conventional numbers for 650MHz.
Specifically, HUB architecture reaches a 15% higher clock
frequency and, even then, the HUB architecture uses 26%
less area, and 12% less power, than the conventional one.
That means that the HUB approach for BFloat16 reduces
simultaneously area, power, and delay.

Although the benefits of the HUB format can be observed

50 150 250 350 450 550 650 750

Frequencies (MHz)

2000

4000

6000

8000

10000

A
re

a
(

m
2
)

BF16
HUB BF16

(a) Area

50 150 250 350 450 550 650 750

Frequencies (MHz)

0

1

2

3

4

P
ow

er
 (

 m
W

)

BF16
HUB BF16

(b) Power consumption

Fig. 8. HUB and conventional FMA results for Bfloat16.

from Figure 7 and Figure 8, Figure 9 shows more clearly
which percentage of area and power reduction is achieved
by the HUB approach for both sizes. For BFloat16, the area
reduction when using the HUB format varies around 5%-15%
for frequencies lower than 400MHz, whereas it goes up when
the clock frequency increases reaching almost a 50% of reduc-
tion. Similarly, the power reduction varies around 0%-5% for
frequencies below 400MHz, and it reaches almost 50% above
500MHz. For single-precision, the area reduction is around
10% for frequencies below 300MHz but for higher frequencies
goes up to 38% of reduction. Regarding power reduction
for single-precision is only noticeable for high frequencies,
achieving up to 35%. As mentioned before these reductions
are mainly due to the fact that no rounding logic is required for
the HUB approach. As the rounding logic is in the critical path
in conventional architectures, the higher the frequencies, the
more hardware needed to reach such frequencies and hence the
greater reduction percentage compared to HUB architectures.

VI. CONCLUSIONS AND FUTURE WORK

FMA operation is present in the instruction set architecture
of most modern processors. In current demanding trending
applications like Neural Network, this operation is intensively
used and new representation number formats are being pro-
posed to improve the performance. Following this trend, we

50 150 250 350 450 550 650

Frequencies (MHz)

0

10

20

30

40

50
A

re
a

R
ed

uc
tio

n
H

U
B

 (
 %

)
BF16
FP32

(a) Area reduction

50 150 250 350 450 550 650

Frequencies (MHz)

0

10

20

30

40

50

P
ow

er
 R

ed
uc

tio
n

H
U

B
 (

 %
)

BF16
FP32

(b) Power reduction

Fig. 9. Reduction results for Bfloat16 and FP32 formats.

propose an architecture to deal with the FMA operation under
the HUB format. In this paper, we design a HUB FMA
architecture and its conventional counterpart and compare
them. The features of the HUB format lead to achieving
important improvements in delay, area, and power for the
proposed architecture when compared with the conventional
one for the same precision. The implementation results show
that for single-precision the HUB FMA reduces area and
power up to 38% and 35%, respectively, and for Bfloat16 the
saving is even greater being of up to 48% and 46% for area
and power, respectively. In addition, for BFloat16, the HUB
FMA increases the speed by a 15%, and even then, reduces
the area and power by 26% and 12%, respectively.

In future works, we will study the use of HUB format in
other FMA designs including FMA units that multiply two
Bfloat numbers and accumulate a single-precision number, an
operation that is present in many deep learning accelerators.

REFERENCES

[1] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and
D. Mansell, “Bfloat16 processing for neural networks,” in 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), June 2019, pp. 88–
91.

[2] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi,
and K. Gopalakrishnan, “Dlfloat: A 16-b floating point format designed
for deep learning training and inference,” in 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH), June 2019, pp. 92–95.

[3] J. Hormigo and J. Villalba, “New Formats for Computing with Real-
Numbers under Round-to-Nearest,” Computers, IEEE Transactions on,
vol. 65, no. 7, pp. 2158 – 2168, 2016.

[4] ——, “Measuring Improvement When Using HUB Formats to Imple-
ment Floating-Point Systems under Round-to-Nearest,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6,
pp. 2369–2377, 2016.

[5] J. Villalba-Moreno, “Digit Recurrence Floating-point Division under
HUB Format,” 23rd IEEE Symposium on Computer Arithmetic, Silicom
Valley (California, USA), July 2016.

[6] J. Villalba-Moreno and J. Hormigo, “Floating Point Square Root under
HUB Format,” in 2017 IEEE International Conference on Computer
Design (ICCD), Nov 2017, pp. 447–454.

[7] H. Zhang, D. Chen, and S. Ko, “Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support,” IEEE Transac-
tions on Computers, vol. 68, no. 7, pp. 1035–1048, July 2019.

[8] S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener, “P6
binary floating-point unit,” in 18th IEEE Symposium on Computer
Arithmetic (ARITH ’07), 2007, pp. 77–86.

[9] M. Boersma, M. Kroner, C. Layer, P. Leber, S. M. Muller, and
K. Schelm, “The power7 binary floating-point unit,” in 2011 IEEE 20th
Symposium on Computer Arithmetic, July 2011, pp. 87–91.

[10] S. Boldo and J. Muller, “Exact and approximated error of the fma,” IEEE
Transactions on Computers, vol. 60, no. 2, pp. 157–164, Feb 2011.

[11] P. W. C. E. Hokenek, R. Montoye, “Second–Generation RISC Floating
Point with Multiply–Add Fused,” IEEE J. Solid–State Circuits. Vol. 25,
no. 5, pp. 1207—-1213, 1990.

[12] R. K. Montoye, E. Hokonek, and S. L. Runyan, “Design of the floating-
point execution unit of the IBM risc system/6000,” IBM Journal of
Research and Development, vol. 34, no. 1, pp. 59–70, 1990.

[13] J. Muller, N. Brisebarre, F. Dinechin, C. Jeannerod, V. Lefevre,
G. Melquiond, N. Revol, D. Stehele, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhauser, 2010.

[14] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
San Francisco, 2004.

