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Abstract— The IBM z Systems(TM) is the backbone of the 
insurance, banking, and retail industry. Innovation in these 
markets is driving the demand for new and additional 
applications to better serve the customers.  These workloads like 
machine learning, data analytics, AI, etc. require a rapidly 
increasing number of computations in smaller precision 
formats. With IBM z15(TM) we completely redesigned the 
binary and hexadecimal floating-point unit to efficiently 
implement SIMD operations at 5.2GHz while maintaining the 
industry leading reliability, availability and serviceability 
standard. This paper describes the new design and special 
techniques used to achieve these goals like reusing the existing 
double precision unit pipeline for lower precision parallel 
SIMD, new approaches to formally verify the design, and 
improving error detection for the 14nm technology node. 
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I. INTRODUCTION  
Traditional workloads on the IBM z Systems rely on 

double and high floating-point precision and the z15(TM) 
machine keep delivering excellent performance in that area. 
With the rise of the second AI era, additional workloads in the 
area of data analytics and insights are deployed on z Systems 
to better handle tasks like fraud detection or customer 
interaction as well as system optimization. The new AI 
algorithms and models used to reach a better prediction 
accuracy are significantly more compute intensive; and data 
scientists have recourse to lower precision arithmetic to 
leverage SIMD and execute more computations in parallel per 
cycles. IBM z15(TM) is acknowledging this trend and 
provides a completely redesigned binary floating-point unit to 
meet these new workloads’ requirements. 

The Vector and Floating-Point Unit (VFU) is the main 
execution engine of the IBM z15(TM) processor shipped in 
September 2019 [1]. Manufactured in IBM’s 14 nm 
technology, the VFU supports a core frequency of 5.2 GHz 
(same as z14, but more cores) [2] and supports 2-way 
simultaneous multi-threading. The design point of the VFU 
was enhanced to accelerate workloads for data analytics, 
machine learning, AI, which includes an ever-increasing 
amount of computations in smaller precision formats.  

The execution engines in the VFU comprise two 
symmetrical pipes, where each pipe contains two binary 
floating point units (BFU), one Decimal and Quad Precision 
Engine (DQE), a divide and square root engine, a short latency 
decimal fixed-point engine, and a vector fixed-point and string 
engine which support IBM’s Single Instruction Multiple Data 
(SIMD) architecture for IBM z Systems™ [3]. 

There are also two load/store pipelines that can read or 
write to a Vector Register File (VRF) and two FXU read and 
write ports that can access the VRF. [4] 

Each VFU pipeline is a total of 10 cycles deep. The depth 
of the pipeline was determined by the longest pipeline depth, 
which is the Decimal and Quad-Precision Engine (DQE). 
When operations complete in shorter pipelines, the result are 
sent to a forwarding network where they can be sourced by a 
dependent operation as soon as the data is available; while 
freeing up associated resources to increase performance. [4] 

The new BFU design doubles the throughput for single 
precision floating point operation and reduces the latency by 
14% compared to the IBM z14(TM). Section 2 gives an 
overview of the binary and hexadecimal floating-point unit 
and its pipeline. Section 3 details the design decisions and 
implementation to support the high frequency and throughput. 
Section 4 discuss the approach to error detection in the 

 
Fig. 1 BFU Pipeline Structure 
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arithmetic circuits. Finally Section 5 presents the testing and 
coverage of the more than 160 arithmetic instructions 
implemented in the unit. 

II. BINARY FLOATING-POINT UNIT (BFU) 
The BFU pipeline was designed to be seven cycles back to 

back latency in prior zSystem design. It is designed to cover 
binary floating point and hexadecimal floating-point single 
and double precision 32b/64b data type operations. The newly 
designed BFU in z15 does have a reduced pipeline, which is 
only 6 cycles long, back to back. This reduces the latency by 
14% for all instructions covered by the BFU. 

Fig. 1 shows a block diagram of the new BFU pipeline. 
Since it is designed for a system frequency of 5.2 GHz, some 
blocks span over two cycles to meet timing requirements. The 
BFU is a six -stage fully pipelined unit to execute one 
instruction every cycle. Each operand bus feeding into the 
BFU, as well as the result bus is 64b wide. 

A. Formatter 
The Formatter is separating the sign, exponent and fraction 

from the operands and aligning the exponents. It sends the 
fraction to the aligner and multiplier as well as sign and 
exponent to the Exponent & Control. The detection of special 
cases like zero, infinity and nan; as well as the masking based 
on the data format is also done in the Formatter. 

B. Aligner 
In parallel to the Multiplier, the Aligner does align one of 

the fractions according to the exponents for the adder to match 
the result of the Multiplier. The Aligner covers two cycles and 
allows for shifts by up to 255 bits. A Barrel-Shifter was chosen 
for timing and wireability reasons. 

C. Multiplier 
The Multiplier does do the radix-4 based multiplication of 

two operands fraction, which can be up to 56 bits wide, each, 
including the implicit bit. That width was chosen to support 
the 14 fraction digits of the hex floating-point format. It is an 
adder tree to sum up the 29 partial products based on booth 
digit calculation as well as other correction terms. It returns 
116 bits sum and carry as a result. 

D. Adder 
The Adder adds sum and carry, as well as the shifted result 

from the Aligner. A carry-lookahead adder structure was 
chosen. In parallel, a leading zero anticipator (LZA) is 
estimating the number of leading zeros to be normalized. 

E. Normalizer 
The Normalizer is shifting the result of the Adder 

according the anticipated leading zeros. 

F. Rounder 
The Rounder is doing the correction of the case the leading 

zero anticipation was wrong by one, increments in rounding 
case, forces to maximum positive and negative values. 

G. Exponent & Control 
This block handles the calculation of the exponent and sets 

the control bits for all base blocks along the pipeline. 

The reduced pipeline could be achieved by several 
different aspects. Since the initial design point, some 
generations ago, multiple technology enhancements were 
giving margin on the timing. Arithmetic improvements, e.g. 
faster shift amount calculation in the Aligner by using better 
pre-processing for the least significant bits of the shift amount, 
improving the adder structure from a manually written one 
with a latch boundary in it to removing the latch boundary and 
an optimized synthesized adder structure, streamlining the 
special case handling, and combining leading zero correction 
and rounding in one step. The previous BFU design was 
prepared for multi cycle ops like square root and divide. They 
were moved out, some of them generations ago, also 
published in [4]. By removing the feedback paths and 
optimizing for a pure pipelined design, the critical path could 
be shortened. The physical design was optimized for a small 
block approach. By moving to large synthesis blocks more 
improvements could be achieved, for example by optimizing 
the latch boundaries. 

III. DETAILING THE SIMD FLOATING POINT 
IMPLEMENTATION 

The BFU in z15 was enhanced to double the throughput 
for 32b binary floating-point. As power and area are a critical 
resource in modern microprocessors, we chose an approach to 
share the existing multiplier and add smaller 32b variants of 
all other blocks.  

Fig. 2 shows all new hardware blocks added to support the 
doubled throughput in grey. The Multiplier is reused, 
therefore both 64b operands are fed into the Multiplier, but the 
sign and exponent are forced to 0. All white blocks were 
existing and support the 64b wide data flow already. 

The Adder (64b) is supporting the 64x64 bit mode and is 
about 116 bit wide. The Adder (32b) does only support the 
smaller precision 32x32 bit and is therefore 56b wide. 

Fig. 3 shows how two 32b operands per one 64b input, 
a0, a1, b0 and b1, are having their exponent and sign forced to 
zero at the input of the multiplier. If both input operands of the 
multiplier are treated that way, the result P will look like: 

 R = (a0*232+a1)  * (b0*232+b1 ) (1) 

 R = a0*b0*264+a0*b1*232+a1*b0*232+a1*b1 (2) 
 

Fig. 2 BFU Pipeline with the extension to double the 32b throughput 
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Fig. 3 Mapping of two 32b operands at one 64b multiplier input 
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The result would consist of four parts added to each other. 
The first part, 𝑎0∗𝑏0∗264, and the fourth part, 𝑎1∗𝑏1, are the 
parts needed for the result of two multiplications of 32b 
operands. If we suppress part two and three of the sum, there 
is no interference, and one can just pick the two result fractions 
at the proper bit position from the result bus. Therefore, a 
suppression mode was introduced, and each partial product of 
the Multiplier is divided into a high and low part. For each, the 
high and low part can be suppressed separately. 

We carefully weighted what to pick as base for the mixed 
arithmetic precision design: the z14 existing double precision 
arithmetic engine and extend it to support two single precision 
path [6] or coupling two single precision units to support 
double precision. Our decision was mainly guided by: 

• The existing double precision arithmetic design has 
been tuned over the years for area, power and timing 
efficiency; and has a running verification environment. 

• Double precision arithmetic – binary but especially 
hexadecimal – is the most commonly used format in 
existing workload for the machine. 

• IBM z Systems(TM) support subnormal handling in 
hardware for all precisions. A lot of extra wiring and 
logic was expected when starting from a single 
precision design. 

• Trimming down double precision logic to single 
precision logic for elements of the design we 
duplicated in order to balance the design complexity 
vs. power/area gain can be done easily. In a number of 
cases it was down to changing generics/constants in 
the design and verification environment. 

Fig. 4 shows the structure of the 64b Multiplier and its 
partial products, how they are aligned, and which parts get 
masked to have no interference of both multiplications of 
FP32 numbers in parallel.  

In the new IBM z15(TM) microprocessor several 
instructions support that double bandwidth throughput. Those 
instructions are: 

• Vector Load FP Integer 

• Vector FP Multiply And Add / Subtract 

• Vector FP Add / Subtract / Multiply 

• Vector FP Negative Multiply And Add / Subtract 

• Vector FP Load Lengthened / Rounded 

• Vector FP Convert To / From Fixed / Logical 

Fig. 5 shows the overall area spending of the BFU SIMD 
Implementation. The partitioning between function and RAS 
is 70% area for functionality and 30% for RAS protection 
logic. The base functionality of the 64b and 32b Binary 
Floating-Point function is 75% of the area. A 25% additional 
logic area is needed for the 32b SIMD Binary Floating-Point 
functionality (both including RAS). So, the overall area is 
55% base functionality for 64b and 32b Binary Floating-Point, 
15% for the additional 32b SIMD Binary Floating-Point 
capability and a 30% to protect both for RAS requirements. 

IV. RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS) 
In the z15 BFU, the way of protecting the logic with 

residue has changed to a new scheme. The new scheme is 
easier maintainable and provides more fine granular checking. 
Each base block can be checked isolated and in case of 
changing one base block, only the local checking of that base 
block needs to be changed. The prior generations have been 
using a monolithic checking of the whole operation. The 
monolithic approach had many cases where the checking was 
turned off. In those cases, the checking was either too 
complicated or not feasible at all. 

Fig. 6 shows the residue generation blocks for the main 
data flow and how they are placed between the base blocks. 
There are additional residue generation blocks for the 
Exponent & Control, which are not shown in the figure.  

There is a residue generation block (gen_res) before and 
after each base block. Each base block does have a 
corresponding residue checking block, which protects the 
corresponding base block. 

V. VERIFICATION TECHNIQUE 
The z15(TM) processor target market, especially banking 

and insurance sector requires a verified compliance to 

 
Fig. 4 Reusage of 64b Multiplier double throughput of 32b 

 
Fig. 5 Area spending for 32b SIMD and RAS of the BFU 
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Fig. 6 Residue generation blocks as they are spread in the BFU 
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arithmetic standards for all computation. Exhaustive pre-
silicon cycle-by-cycle simulation of the behaviour of the 
engine for all the representable arithmetic number would take 
many years. To overcome this limitation a number of 
techniques are applied to the verification of the VFU engine. 
The main obvious method used to tackle the complete 
verification is formal verification. This is also what is being 
used for the arithmetic engines with in-house tools [7]. It does 
still come with a number of challenges as the logic contains 
large (56x56) multipliers and in some area like number 
conversion, cycling multiple times through the pipeline. This 
significantly expand the exploration space for the formal 
verification. We use hierarchical methods to reduce the overall 
problem size and verify e.g. the multiplier standalone and then 
use a set of abstracted rules for the multiplier to verify the 
whole BFU [11]. Nevertheless the formal verification of the 
unit with its many hundreds of instructions can take months 
until the complete proof is achieved. This is not the desired 
turnaround time for designer modifying the logic and 
requiring fast validation response time. Partial formal test 
exploration is possible within hours but it does not cover well 
corner cases. To enable better and faster corner case testing, 
we rely on mathematically skewed random tests produced by 
an IBM tool FPGen [8][9] probing special arithmetic cases 
and operand alignments for floating points and rounding 
cases. These cases are based on the general IEEE arithmetic 
standard [13] as well as micro-architecture knowledge of the 
BFU itself to cover special cases handled by dedicated logic 
or transition between different paths/cases in the hardware, 
like overlapping/non-overlapping of the product and addend 
of an FMA operation. 

Beyond the verification of mathematical operation, we 
also need to consider that more than 50 instructions can be in 
flight at any given point in time in the VFU engine. Exact 
sequencing of all control signals for the various pipes and 
stages including multi-reentry ops and instruction flushing 
due to speculative execution become very challenging. An 
adder supporting partial output masking and shifting, carry 
in/outs and rounding mode for multiple precision and split in 
multiple pipeline stages can easily have close to 40 different 
control signals. This requires to spend also significant 
verification effort in random simulation with sequences of 
instructions due to the out-of-order, pipeline nature of the 
design to reach the high frequency, low latency and high 
throughput. We are relying there on the Genesys Test 
Generator [10] coupled with a constraint solver reusing some 
constrains created for the FPGen tool, but also adding core 
micro-architecture constraints like instruction dependencies, 
scheduling or flushing [11]. Coverage events are coded, 
tracked and analysed across all verification disciplines to 
guaranty that defined rules and generated tests cover all cases 
defined during design planning and design implementation. 
Tracking and orchestration of the complete verification is 
done via the IBM Verification Cockpit Platform [12]. 

On top of this generic verification and as stated in 
paragraph 3, several new instructions were added or modified 
to support the doubled throughput. All of those instructions 
did have a working reference model for their scalar version to 
prove the correct functionality. In the beginning of the project, 
we verified those instructions by formal proving that the 
instance 0 of the BFU does behave the same for their low part 
of the vector as the instance 1 does behave for the high part. 
In addition, we prove that the high part of instance 0 does 
behave the same as instance 1 for the low part.  

If we define the inputs vectors of the BFU a = (a0, a1); b = 
(b0, b1); c= (c0, c1) and the result: r = (r0, r1), and the input and 
result vector of BFU instance i to be ai, bi, ci and ri. Having 
two BFU instances, if a00 = a11, b00 = b11, c00 = c11, this means 
r00 = r11, and if a10 = a01, b10 = b01, c10 = c01, this means r10 = 
r01, for all vector instructions with equal inputs. 

This cross verification makes sure that the calculation is 
the same for each vector element, while only proving each 
scalar calculation for each instruction once against the 
reference model. This way, the logic designers could early 
debug the newly written vector capabilities before all 
reference models for all vector instructions are available. 

VI. CONCLUSION 
This paper describes the SIMD Multi Format Floating 

Point Unit hardware in the Vector and Floating-Point Unit of 
the z15(TM) processor and the new approach for the formal 
verification. The hardware was designed to maximize 
performance for increasing amounts of floating-point 
operations in smaller hexadecimal and binary number formats 
while maintaining frequency, compared to IBM z14(TM). The 
newly written binary floating-point unit consists of a six stages 
deep execution pipeline and supports 5.2GHz. An advanced 
bypass network provides early result forwarding to prevent 
performance loss on dependent operations. The total area of 
the VFU hardware, including the vector and floating-point 
register files is 1.2mm2 in a 14nm technology node, which is 
a significant shrink, compared to 3.9mm2 of IBM z13(TM) 
[4]. This reduced area compares to achieving more than one 
third area saving beyond the technology shrink. 
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