

SIMD Multi Format Floating-Point Unit on the
IBM z15(TM)

Stefan Payer
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany
spayer@de.ibm.com

Kerstin Schelm
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany

SCHELMKN@de.ibm.com

Tina Babinsky
Compute Unit Verification

IBM Deutschland R&D GmbH
Böblingen, Germany

tina.babinsky@de.ibm.com

Cedric Lichtenau
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany

lichtenau@de.ibm.com

Petra Leber
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany

PLEBER@de.ibm.com

Michael Klein
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany

michael_klein@de.ibm.com

Nicol Hofmann
Compute Unit Development

IBM Deutschland R&D GmbH
Böblingen, Germany

NHOFMANN@de.ibm.com

Abstract— The IBM z Systems(TM) is the backbone of the
insurance, banking, and retail industry. Innovation in these
markets is driving the demand for new and additional
applications to better serve the customers. These workloads like
machine learning, data analytics, AI, etc. require a rapidly
increasing number of computations in smaller precision
formats. With IBM z15(TM) we completely redesigned the
binary and hexadecimal floating-point unit to efficiently
implement SIMD operations at 5.2GHz while maintaining the
industry leading reliability, availability and serviceability
standard. This paper describes the new design and special
techniques used to achieve these goals like reusing the existing
double precision unit pipeline for lower precision parallel
SIMD, new approaches to formally verify the design, and
improving error detection for the 14nm technology node.

Keywords— Floating Point Unit, SIMD, Multi Format,
Formal Verification, Binary, Hexadecimal, Machine Learning,
AI, IBM z15(TM)

I. INTRODUCTION
Traditional workloads on the IBM z Systems rely on

double and high floating-point precision and the z15(TM)
machine keep delivering excellent performance in that area.
With the rise of the second AI era, additional workloads in the
area of data analytics and insights are deployed on z Systems
to better handle tasks like fraud detection or customer
interaction as well as system optimization. The new AI
algorithms and models used to reach a better prediction
accuracy are significantly more compute intensive; and data
scientists have recourse to lower precision arithmetic to
leverage SIMD and execute more computations in parallel per
cycles. IBM z15(TM) is acknowledging this trend and
provides a completely redesigned binary floating-point unit to
meet these new workloads’ requirements.

The Vector and Floating-Point Unit (VFU) is the main
execution engine of the IBM z15(TM) processor shipped in
September 2019 [1]. Manufactured in IBM’s 14 nm
technology, the VFU supports a core frequency of 5.2 GHz
(same as z14, but more cores) [2] and supports 2-way
simultaneous multi-threading. The design point of the VFU
was enhanced to accelerate workloads for data analytics,
machine learning, AI, which includes an ever-increasing
amount of computations in smaller precision formats.

The execution engines in the VFU comprise two
symmetrical pipes, where each pipe contains two binary
floating point units (BFU), one Decimal and Quad Precision
Engine (DQE), a divide and square root engine, a short latency
decimal fixed-point engine, and a vector fixed-point and string
engine which support IBM’s Single Instruction Multiple Data
(SIMD) architecture for IBM z Systems™ [3].

There are also two load/store pipelines that can read or
write to a Vector Register File (VRF) and two FXU read and
write ports that can access the VRF. [4]

Each VFU pipeline is a total of 10 cycles deep. The depth
of the pipeline was determined by the longest pipeline depth,
which is the Decimal and Quad-Precision Engine (DQE).
When operations complete in shorter pipelines, the result are
sent to a forwarding network where they can be sourced by a
dependent operation as soon as the data is available; while
freeing up associated resources to increase performance. [4]

The new BFU design doubles the throughput for single
precision floating point operation and reduces the latency by
14% compared to the IBM z14(TM). Section 2 gives an
overview of the binary and hexadecimal floating-point unit
and its pipeline. Section 3 details the design decisions and
implementation to support the high frequency and throughput.
Section 4 discuss the approach to error detection in the

Fig. 1 BFU Pipeline Structure

f1

f2

f3

f4

f5

f6

Formatter

Aligner Multiplier

Adder

Normalizer

Rounder

Exponent
&

Control

Operands

Result

arithmetic circuits. Finally Section 5 presents the testing and
coverage of the more than 160 arithmetic instructions
implemented in the unit.

II. BINARY FLOATING-POINT UNIT (BFU)
The BFU pipeline was designed to be seven cycles back to

back latency in prior zSystem design. It is designed to cover
binary floating point and hexadecimal floating-point single
and double precision 32b/64b data type operations. The newly
designed BFU in z15 does have a reduced pipeline, which is
only 6 cycles long, back to back. This reduces the latency by
14% for all instructions covered by the BFU.

Fig. 1 shows a block diagram of the new BFU pipeline.
Since it is designed for a system frequency of 5.2 GHz, some
blocks span over two cycles to meet timing requirements. The
BFU is a six -stage fully pipelined unit to execute one
instruction every cycle. Each operand bus feeding into the
BFU, as well as the result bus is 64b wide.

A. Formatter
The Formatter is separating the sign, exponent and fraction

from the operands and aligning the exponents. It sends the
fraction to the aligner and multiplier as well as sign and
exponent to the Exponent & Control. The detection of special
cases like zero, infinity and nan; as well as the masking based
on the data format is also done in the Formatter.

B. Aligner
In parallel to the Multiplier, the Aligner does align one of

the fractions according to the exponents for the adder to match
the result of the Multiplier. The Aligner covers two cycles and
allows for shifts by up to 255 bits. A Barrel-Shifter was chosen
for timing and wireability reasons.

C. Multiplier
The Multiplier does do the radix-4 based multiplication of

two operands fraction, which can be up to 56 bits wide, each,
including the implicit bit. That width was chosen to support
the 14 fraction digits of the hex floating-point format. It is an
adder tree to sum up the 29 partial products based on booth
digit calculation as well as other correction terms. It returns
116 bits sum and carry as a result.

D. Adder
The Adder adds sum and carry, as well as the shifted result

from the Aligner. A carry-lookahead adder structure was
chosen. In parallel, a leading zero anticipator (LZA) is
estimating the number of leading zeros to be normalized.

E. Normalizer
The Normalizer is shifting the result of the Adder

according the anticipated leading zeros.

F. Rounder
The Rounder is doing the correction of the case the leading

zero anticipation was wrong by one, increments in rounding
case, forces to maximum positive and negative values.

G. Exponent & Control
This block handles the calculation of the exponent and sets

the control bits for all base blocks along the pipeline.

The reduced pipeline could be achieved by several
different aspects. Since the initial design point, some
generations ago, multiple technology enhancements were
giving margin on the timing. Arithmetic improvements, e.g.
faster shift amount calculation in the Aligner by using better
pre-processing for the least significant bits of the shift amount,
improving the adder structure from a manually written one
with a latch boundary in it to removing the latch boundary and
an optimized synthesized adder structure, streamlining the
special case handling, and combining leading zero correction
and rounding in one step. The previous BFU design was
prepared for multi cycle ops like square root and divide. They
were moved out, some of them generations ago, also
published in [4]. By removing the feedback paths and
optimizing for a pure pipelined design, the critical path could
be shortened. The physical design was optimized for a small
block approach. By moving to large synthesis blocks more
improvements could be achieved, for example by optimizing
the latch boundaries.

III. DETAILING THE SIMD FLOATING POINT
IMPLEMENTATION

The BFU in z15 was enhanced to double the throughput
for 32b binary floating-point. As power and area are a critical
resource in modern microprocessors, we chose an approach to
share the existing multiplier and add smaller 32b variants of
all other blocks.

Fig. 2 shows all new hardware blocks added to support the
doubled throughput in grey. The Multiplier is reused,
therefore both 64b operands are fed into the Multiplier, but the
sign and exponent are forced to 0. All white blocks were
existing and support the 64b wide data flow already.

The Adder (64b) is supporting the 64x64 bit mode and is
about 116 bit wide. The Adder (32b) does only support the
smaller precision 32x32 bit and is therefore 56b wide.

Fig. 3 shows how two 32b operands per one 64b input,
a0, a1, b0 and b1, are having their exponent and sign forced to
zero at the input of the multiplier. If both input operands of the
multiplier are treated that way, the result P will look like:

 R = (a0*232+a1) * (b0*232+b1) (1)

 R = a0*b0*264+a0*b1*232+a1*b0*232+a1*b1 (2)

Fig. 2 BFU Pipeline with the extension to double the 32b throughput

f1

f2

f3

f4

f5

f6

Formatter (64b)

Aligner
(64b)Multiplier

Adder (64b)

Normalizer (64b)

Rounder (64b)

Exponent
&

Control
(64b)

Operands

Result

Formatter (32b)

Aligner
(32b)

Adder (32b)

Normalizer (32b)

Rounder (32b)

Exponent
&

Control
(32b)

Fig. 3 Mapping of two 32b operands at one 64b multiplier input

s exp fraction
3233 4041 63

s exp fraction
0 1 8 9 31

0 0..0 fraction
3233 4041 63

0 0..0 fraction
0 1 8 9 31

The result would consist of four parts added to each other.
The first part, 𝑎0∗𝑏0∗264, and the fourth part, 𝑎1∗𝑏1, are the
parts needed for the result of two multiplications of 32b
operands. If we suppress part two and three of the sum, there
is no interference, and one can just pick the two result fractions
at the proper bit position from the result bus. Therefore, a
suppression mode was introduced, and each partial product of
the Multiplier is divided into a high and low part. For each, the
high and low part can be suppressed separately.

We carefully weighted what to pick as base for the mixed
arithmetic precision design: the z14 existing double precision
arithmetic engine and extend it to support two single precision
path [6] or coupling two single precision units to support
double precision. Our decision was mainly guided by:

• The existing double precision arithmetic design has
been tuned over the years for area, power and timing
efficiency; and has a running verification environment.

• Double precision arithmetic – binary but especially
hexadecimal – is the most commonly used format in
existing workload for the machine.

• IBM z Systems(TM) support subnormal handling in
hardware for all precisions. A lot of extra wiring and
logic was expected when starting from a single
precision design.

• Trimming down double precision logic to single
precision logic for elements of the design we
duplicated in order to balance the design complexity
vs. power/area gain can be done easily. In a number of
cases it was down to changing generics/constants in
the design and verification environment.

Fig. 4 shows the structure of the 64b Multiplier and its
partial products, how they are aligned, and which parts get
masked to have no interference of both multiplications of
FP32 numbers in parallel.

In the new IBM z15(TM) microprocessor several
instructions support that double bandwidth throughput. Those
instructions are:

• Vector Load FP Integer

• Vector FP Multiply And Add / Subtract

• Vector FP Add / Subtract / Multiply

• Vector FP Negative Multiply And Add / Subtract

• Vector FP Load Lengthened / Rounded

• Vector FP Convert To / From Fixed / Logical

Fig. 5 shows the overall area spending of the BFU SIMD
Implementation. The partitioning between function and RAS
is 70% area for functionality and 30% for RAS protection
logic. The base functionality of the 64b and 32b Binary
Floating-Point function is 75% of the area. A 25% additional
logic area is needed for the 32b SIMD Binary Floating-Point
functionality (both including RAS). So, the overall area is
55% base functionality for 64b and 32b Binary Floating-Point,
15% for the additional 32b SIMD Binary Floating-Point
capability and a 30% to protect both for RAS requirements.

IV. RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS)
In the z15 BFU, the way of protecting the logic with

residue has changed to a new scheme. The new scheme is
easier maintainable and provides more fine granular checking.
Each base block can be checked isolated and in case of
changing one base block, only the local checking of that base
block needs to be changed. The prior generations have been
using a monolithic checking of the whole operation. The
monolithic approach had many cases where the checking was
turned off. In those cases, the checking was either too
complicated or not feasible at all.

Fig. 6 shows the residue generation blocks for the main
data flow and how they are placed between the base blocks.
There are additional residue generation blocks for the
Exponent & Control, which are not shown in the figure.

There is a residue generation block (gen_res) before and
after each base block. Each base block does have a
corresponding residue checking block, which protects the
corresponding base block.

V. VERIFICATION TECHNIQUE
The z15(TM) processor target market, especially banking

and insurance sector requires a verified compliance to

Fig. 4 Reusage of 64b Multiplier double throughput of 32b

Fig. 5 Area spending for 32b SIMD and RAS of the BFU

BFP64
/

BFP32
(first pipe)

BFP32
(second pipe)

65%
20%

15%RAS

shared
multiplier

+
control

(~20%)

25%75%

Fig. 6 Residue generation blocks as they are spread in the BFU

f1

f2

f3

f4

f5

f6

Formatter

Aligner Multiplier

Adder

Normalizer

Rounder

Exponent
&

Control

Operands

Result

gen_res gen_resgen_res

gen_res gen_resgen_res

gen_res gen_res

gen_res

gen_res

gen_res

arithmetic standards for all computation. Exhaustive pre-
silicon cycle-by-cycle simulation of the behaviour of the
engine for all the representable arithmetic number would take
many years. To overcome this limitation a number of
techniques are applied to the verification of the VFU engine.
The main obvious method used to tackle the complete
verification is formal verification. This is also what is being
used for the arithmetic engines with in-house tools [7]. It does
still come with a number of challenges as the logic contains
large (56x56) multipliers and in some area like number
conversion, cycling multiple times through the pipeline. This
significantly expand the exploration space for the formal
verification. We use hierarchical methods to reduce the overall
problem size and verify e.g. the multiplier standalone and then
use a set of abstracted rules for the multiplier to verify the
whole BFU [11]. Nevertheless the formal verification of the
unit with its many hundreds of instructions can take months
until the complete proof is achieved. This is not the desired
turnaround time for designer modifying the logic and
requiring fast validation response time. Partial formal test
exploration is possible within hours but it does not cover well
corner cases. To enable better and faster corner case testing,
we rely on mathematically skewed random tests produced by
an IBM tool FPGen [8][9] probing special arithmetic cases
and operand alignments for floating points and rounding
cases. These cases are based on the general IEEE arithmetic
standard [13] as well as micro-architecture knowledge of the
BFU itself to cover special cases handled by dedicated logic
or transition between different paths/cases in the hardware,
like overlapping/non-overlapping of the product and addend
of an FMA operation.

Beyond the verification of mathematical operation, we
also need to consider that more than 50 instructions can be in
flight at any given point in time in the VFU engine. Exact
sequencing of all control signals for the various pipes and
stages including multi-reentry ops and instruction flushing
due to speculative execution become very challenging. An
adder supporting partial output masking and shifting, carry
in/outs and rounding mode for multiple precision and split in
multiple pipeline stages can easily have close to 40 different
control signals. This requires to spend also significant
verification effort in random simulation with sequences of
instructions due to the out-of-order, pipeline nature of the
design to reach the high frequency, low latency and high
throughput. We are relying there on the Genesys Test
Generator [10] coupled with a constraint solver reusing some
constrains created for the FPGen tool, but also adding core
micro-architecture constraints like instruction dependencies,
scheduling or flushing [11]. Coverage events are coded,
tracked and analysed across all verification disciplines to
guaranty that defined rules and generated tests cover all cases
defined during design planning and design implementation.
Tracking and orchestration of the complete verification is
done via the IBM Verification Cockpit Platform [12].

On top of this generic verification and as stated in
paragraph 3, several new instructions were added or modified
to support the doubled throughput. All of those instructions
did have a working reference model for their scalar version to
prove the correct functionality. In the beginning of the project,
we verified those instructions by formal proving that the
instance 0 of the BFU does behave the same for their low part
of the vector as the instance 1 does behave for the high part.
In addition, we prove that the high part of instance 0 does
behave the same as instance 1 for the low part.

If we define the inputs vectors of the BFU a = (a0, a1); b =
(b0, b1); c= (c0, c1) and the result: r = (r0, r1), and the input and
result vector of BFU instance i to be ai, bi, ci and ri. Having
two BFU instances, if a00 = a11, b00 = b11, c00 = c11, this means
r00 = r11, and if a10 = a01, b10 = b01, c10 = c01, this means r10 =
r01, for all vector instructions with equal inputs.

This cross verification makes sure that the calculation is
the same for each vector element, while only proving each
scalar calculation for each instruction once against the
reference model. This way, the logic designers could early
debug the newly written vector capabilities before all
reference models for all vector instructions are available.

VI. CONCLUSION
This paper describes the SIMD Multi Format Floating

Point Unit hardware in the Vector and Floating-Point Unit of
the z15(TM) processor and the new approach for the formal
verification. The hardware was designed to maximize
performance for increasing amounts of floating-point
operations in smaller hexadecimal and binary number formats
while maintaining frequency, compared to IBM z14(TM). The
newly written binary floating-point unit consists of a six stages
deep execution pipeline and supports 5.2GHz. An advanced
bypass network provides early result forwarding to prevent
performance loss on dependent operations. The total area of
the VFU hardware, including the vector and floating-point
register files is 1.2mm2 in a 14nm technology node, which is
a significant shrink, compared to 3.9mm2 of IBM z13(TM)
[4]. This reduced area compares to achieving more than one
third area saving beyond the technology shrink.

ACKNOWLEDGEMENTS
Many thanks to our excellent technical leads Silvia Melitta

Müller, Eric Schwarz and Kevin Shum as well as to Osher
Yifrach and Revital Arieli for the verification work and also
to our physical design team which made this possible!

REFERENCES
[1] "IBM Unveils z15 With Industry-First Data Privacy Capabilities"

https://newsroom.ibm.com/2019-09-12-IBM-Unveils-z15-With-
Industry-First-Data-Privacy-Capabilities (Press release). IBM, 2019.

[2] "IBM z15 (8561) Technical Guide" http://www.redbooks.ibm.com/
abstracts/sg248850.html?Open. IBM, 2019.

[3] E. Schwarz, "The IBM z13 SIMD Accelerators for Integer, String, and
Floating-Point", 22nd Symposium on Computer Arithmetic, 2014.

[4] C. Lichtenau, S. Carlough, S. Mueller, "Quad Precision Floating Point
on IBM z13(TM)", 23nd Symposium on Computer Arithmetic, 2015

[5] "z/Architecture Principle of Operation" https://www.ibm.com/
support/pages/node/6019426. IBM, 2019.

[6] "Fused Multiply-Adder with Booth-Encoding" https://patents.google
.com/patent/US20140095568 Patent US20140095568A1. IBM, 2013.

[7] "RuleBase SixthSense Tool" https://www.research.ibm.com/
haifa/projects/verification/Formal_Methods-Home/index.shtml

[8] "IBM FPgen Floating Point Test Generator (FPgen)" http://researcher
.watson.ibm.com/researcher/view_group.php?id=9517

[9] "IBM Floating-Point Test Generator" https://www.research.ibm.com/
haifa/projects/verification/fpgen/

[10] "IBM Genesys Professional Edition Test Generator” https://www
.research.ibm.com/haifa/projects/verification/genesys_pro/index.html

[11] "IBM Constraint Solver" https://www.research.ibm.com/
haifa/dept/vst/csp.shtml

[12] "Verification Cockpit Platform" https://www.research.ibm.com/
haifa/dept/vst/hvt_psvtva_cockpit.shtml

[13] American National Standards Institute and Institute of Electrical and
Electronic Engineers. “IEEE Standard for Binary Floating-Point
Arithmetic”, ANSI/IEEE Standard 754-1985, 1985

