
An asymptotically faster version of FV supported
on HPR

Jean-Claude Bajard∗, Julien Eynard†, Paulo Martins‡, Leonel Sousa‡ and Vincent Zucca.§
∗Sorbonne Université, CNRS, Inria, Institut de Mathématiques de Jussieu – Paris Rive Gauche, France.

jean-claude.bajard@sorbonne-universite.fr
†Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble.

julien.eynard@cea.fr
‡INESC-ID, Instituto Superior Técnico, Universidade de Lisboa.

paulo.sergio@netcabo.pt, las@inesc-id.pt
§imec-COSIC KU Leuven.
vincent.zucca@kuleuven.be

Abstract—State-of-the-art implementations of homomorphic
encryption exploit the Fan and Vercauteren (FV) scheme and
the Residue Number System (RNS). While the RNS breaks down
large integer arithmetic into smaller independent channels, its
non-positional nature makes operations such as division and
rounding hard to implement, and makes the representation of
small values inefficient. In this work, we propose the application
of the Hybrid Position-Residues Number System representation
to the FV scheme. This is a positional representation of large
radix where the digits are represented in RNS. It inherits the
benefits from RNS and allows to accelerate the critical division
and rounding operations while also making the representation of
smaller values more compact. This directly benefits the decryp-
tion and the homomorphic multiplication procedures, reducing
their asymptotic complexity, in dimension n, from O(n2 logn) to
O(n logn) and from O(n3 logn) to O(n3), respectively and has
resulted in noticeable speedups when experimentally compared
to related art RNS implementations.

Index Terms—Fan-Vercauteren scheme, Residue Number Sys-
tem, Homomorphic Encryption

I. INTRODUCTION

Since Gentry’s uncovering of Fully Homomorphic Encryp-
tion (FHE) [1], a large amount of research has been dedicated
to improving its efficiency. While the Fan and Vercauteren
(FV) [2] proposal is one of the most efficient homomorphic
schemes, it requires computationally expensive operations on
polynomials with large coefficients. The Residue Number Sys-
tem (RNS) [3] allows to break down large integer arithmetic
into many independent smaller channels. With it, additions and
multiplications are computed independently for each channel,
resulting in a reduction of complexity when compared to
traditional positional representations. As a result, state-of-the-
art implementations of FV are based on the RNS [4], [5].

However, the non-positional nature of RNS makes it more
difficult to implement operations such as division and round-
ing, which are required by both FV homomorphic multi-
plication and decryption procedures. Furthermore, while for
positional representations the size of the representation of a
number is proportional to its magnitude, the RNS representa-
tion of a number is as large as the largest number representable
in it. During the relinearisation procedure, which dominates

the asymptotic complexity of the homomorphic multiplication,
polynomial coefficients need to be decomposed to values of
smaller magnitude. Hence, after applying this decomposition,
the RNS becomes a sub-optimal representation.

This work proposes to exploit instead the Hybrid Position-
Residues Number System (HPR) [6] representation of numbers
to accelerate the cryptographic operations of FV. This hybrid
representation is of a positional nature, but each digit is
represented in RNS. It not only inherits the parallel nature
of RNS but it also makes the relinearisation, and division and
rounding operations more efficient. As a result, in dimension
n, the complexity of FV decryption is asymptotically reduced
from O(n2 log n) to O(n log n). Similarly, the complexity
of homomorphic multiplications is reduced from O(n3 log n)
to O(n3). Complexity gains are translated in practice into
speedups of up to 8.0 and 8.6 for the decryption operation
and of up to 2.0 and 1.6 for the homomorphic multiplication,
for the parameters considered in this article and two state-of-
the-art schemes, with an upward trend for larger parameters.

The remainder of this article is organised as follows: the
FV cryptosystem and the HPR representation are described
in Section II. Based on these techniques, our construction is
given in Section III. Afterwards, Section IV reviews related art,
and Sections V and VI compare the proposed techniques with
state-of-the-art methods from theoretical and experimental
perspectives, respectively.

II. BACKGROUND

The ring R = Z[X]/(Xn + 1) can be thought of as
a set of polynomials with integer coefficients and degree
smaller than n. Rq = R/qR denotes the polynomials in R
whose coefficients are reduced modulo an integer q. When
q ≡ 1 (mod 2n), elements of Rq can be represented in the
Number Theoretic Transform (NTT)-domain, which allows for
coefficient-wise additions and multiplications [7]. Henceforth,
boldface letters are used to denote polynomials and the infinity
norm ‖ · ‖∞ is the largest absolute value of the polynomial’s
coefficients. The expansion factor associated to R is defined
as δR = sup

{
‖a·b‖∞
‖a‖∞‖b‖∞ , for a, b ∈ R− {0}

}
. a ← D and

a← χ are used to denote that a is drawn uniformly at random
from the set D or according to a distribution χ, respectively.
The notation | · |q (resp. [·]q) is used to denote the residue
modulo q in [0, q) (resp. in [−q/2, q/2)). Moreover, for a ∈ Q,
b = bae is used to denote the closest integer b ∈ Z to a.
The computational complexity is herein evaluated in terms of
the amount of Elementary Modular Multiplications (EMMs),
whose operands fit a single machine word, floating point
operations (FPOs) and forward and inverse NTTs required.

A. FV cryptosystem

A private-key of the FV scheme [2] is generated as a
polynomial s ← χkey , and the corresponding public-key is
computed as:

b = ([−(a · s+ e)]q ,a) ∈ R2
q

with a← Rq drawn uniformly at random and e← χerr. χkey
is such that for s ← χkey , ‖s‖∞ 6 Bkey for a small Bkey ,
while the distribution χerr has standard deviation σerr such
that elements sampled from this distribution have their infinite
norm smaller than Berr = 6σerr with very high probability.

A relinearisation key is defined with respect to a pair of
functions D and P, such that [〈D(a),P(b)〉]q = [a · b]q and
the infinite norm of D(a) is “small”. The relinearisation key,
which can be interpreted as a vector of pseudo-encryptions of
P(s2), is defined as:

−−→
rlk = (

[
P(s2)− (−→e +−→a · s)

]
q
,−→a) ∈ R2l

q

where −→e ← χlerr and −→a ← Rlq . A ciphertext ct = (c0, c1) ∈
R2
q , encrypting [m]t ∈ Rt, satisfies c0 + c1 · s = ∆[m]t +

v mod q, where ∆ = bq/tc. ct can be correctly decrypted as
long as the noise v satisfies ‖v‖∞ < ∆/2− |q|t/2, through:

m =

[⌊
t

q
[c0 + c1 · s]q

⌉]
t

. (1)

The homomorphic addition of two ciphertexts corresponds
to the pairwise addition of their coefficients modulo q. The
homomorphic multiplication of ct and ct′ encrypting [m]t
and [m′]t is performed in two steps. First, we compute the
three elements ciphertext:

ĉtmult =

([⌊
t

q
c0 · c′0

⌉]
q

,

[⌊
t

q
(c0 · c′1 + c1 · c′0)

⌉]
q

,

[⌊
t

q
c1 · c′1

⌉]
q

)
∈ R3

q (2)

satisfying ĉ0 + ĉ1s + ĉ2s
2 = ∆[m ·m′]t + v̂ mod q. In a

second step, ĉtmult is relinearised, by multiplying D(ĉ2) by−−→
rlk and adding the result to (ĉ0, ĉ1):

ctmult =

([
ĉ0 +

〈
D(ĉ2),

−−→
rlk0

〉]
q
,
[
ĉ1 +

〈
D(ĉ2),

−−→
rlk1

〉]
q

)
.

The result ctmult, can be decrypted with (1) to produce
[m ·m′]t. As homomorphic operations are applied, the noise
associated with ciphertexts grows, limiting the number of
operations that can be applied.

B. Hybrid Position-Residue Number System

Using [6] and considering a modulus q such that q = pd,
one can represent polynomials a ∈ Rq in a positional system
of large radix base p – i.e. such that a =

∑d−1
i=0 aip

i with
(a0, . . . ,ad−1) ∈ (Rp)d. We view elements representated in
HPR as elements of Rp[Y], leading to:

a(Y) =

d−1∑
i=0

aiY
i

which produces the value of a when evaluated at Y = p.
Moreover, if the modulus p is chosen as a product of

small distinct primes, p =
∏
pi∈P pi with P = {p1, · · · , pk},

the Chinese Remainder Theorem (CRT) states that there is a
ring isomorphism between Rp and Rp1 × . . . ×Rpk . In this
case, the digits ais can be represented in RNS as fP(ai) =
([ai]p1 , . . . , [ai]pk) which allows to break down the arithmetic
over the large coefficients into several smaller channels and
thus enhance performance. The RNS representation can be
reversed, and ai recovered, by computing:

f−1
P ([ai]p1 , . . . , [ai]pk) =

[
k∑
i=1

[
[ai]pi

pi
p

]
pi

p

pi

]
p

=

k∑
i=1

[
ai
pi
p

]
pi

p

pi
−αip (3)

with ‖αi‖∞ ≤ (k − 1)/2. However, since the HPR is of
a positional nature, one has to consider the propagation of
carries over the digits after additions or multiplications. In
order to compute the carries, the digits should be able to grow
larger than p. Thus, the digits arithmetic cannot be performed
directly modulo p and a second RNS basis B = {b1, . . . , bk}
is adjoined to P .

1) Carry Propagation: In order to approximate the carry
caused by the ith digit, νi = bai

p e, we add a modulus bsk to B
to form Bsk, and use a Shenoy-Kumaresan approach [8]. First,
we use a fast base extension (FBE),

FBE(ai,P,Bsk) =

(
k∑
i=1

[
ai
pi
p

]
pi

· p
pi

mod b

)
b∈Bsk

to obtain [ai]p + αi · p in base Bsk. Then, the approximated
carry ν̃i = (ai − FBE(ai,P,Bsk))p−1 = bai

p e − αi is
produced in Bsk. To finalise the procedure, the value of ν̃i
is extended exactly to P . An inexact extension first computes
FBE(ν̃i,B,P) = ν̃i +α′i · b in basis P with b = b1 · · · bk and
‖α′i‖∞ 6 (k − 1)/2. Then, the extra residue modulo bsk is
used to correct α′i · b, by computing α′i with:

[α′i]bsk =

[
1

b

(∑̀
i=1

[
ai
bi
b

]
bi

b

bi
− [c̃i]bsk

)]
bsk

.

With this procedure, values ‖ν̃i‖ < λB, for some λ > 0,
can be exactly represented and extended from B so long as
bsk ≥ 2(k + λ) [4, Lemma 6]. For the parameters considered
in this article, bsk can have the same bitwidth as the other

moduli in P and B, which is enough to get the residues of
[ai]p +αi · p and of ν̃i = νi −αi in P ∪ Bsk.

Afterwards, ν̃i can be added to the digit of index i+ 1 and
one can re-run the procedure to compute the carry ν̃i+1 caused
by the digit of index i+1. If one assumes an element to belong
to Rq , the representation of the Most Significant Digit (MSD)
in basis B can be discarded. The MSD is implicitly multiplied
by pd−1, so any value larger than p/2 in absolute value would
lead to representations larger than q/2 = p × pd−1/2, which
are redundant.

Computational cost. The computation of a carry for a
single HPR digit requires a first fast base extension from P to
the k + 1 moduli of Bsk (nk(k + 2) EMMs), followed by the
product by 1/p in base Bsk (n(k+ 1) EMMs), and a Shenoy-
Kumaresan extension (n(k2 + 3k+ 1) EMMs). Finally, since,
when operating modulo q, carries are consecutively computed
for all the digits but the last, the carry propagation procedure
applied to an element in Rdp requires the following amount of
EMMs: {

C1_carry = n(2k2 + 6k + 2) EMMs
Call_carries = (d− 1) · C1_carry

.

III. PROPOSED HPR-BASED CONSTRUCTION

In this section, we propose an efficient HPR variant of the
FV scheme. Key generation, encryption and homomorphic
addition take place as in the original scheme [2], but with
polynomial coefficients represented in HPR.

A. Proposed HPR-based Decryption Algorithm

In this section, an HPR-based method for FV decryption
is proposed. We assume that the HPR representation of a
ciphertext (c0, c1) ∈ R2

q , with:

ci(Y) =

d−1∑
j=0

ci,jY
j

having digits satisfying ‖ci,j‖ 6 β · p for i = 0, 1 and
0 6 j 6 d − 2: β may take the value of k/2 if carry
propagation has been applied; or might be even slightly larger
for cases where the ciphertext represents an homomorphic
sum. Lemma 1 proves that, for the considered setting, the
value of c0(p) + c1(p) · s can be efficiently approximated
having only access to the mod-P representation of the MSD
of c0 and c1 without causing a large error. This reduces by a
factor of d the number of NTTs one needs to compute.

Lemma 1. For i = 0, 1, let ci be such that ‖ci,j‖∞ 6 βp for
j ∈ [[0, d− 2]], then:

[c0,d−1 + c1,d−1 · s]p =
∆[m]t + v + qu

pd−1
+ e+ ε · p (4)

for some ε ∈ R, with the error e verifying ‖e‖∞ 6 p
p−1β(1+

δRBkey).

Proof. In Appendix A.

Decryption consists of efficiently computing (5) modulo t
based on the values of c0,d−1 and c1,d−1.⌊

t · [c0,d−1 + c1,d−1 · s]p
p

⌉
= [m]t + bẽe+ t(u+ ε) (5)

with ẽ =
(
t · v − |q|t[m]t + tpd−1e

)
/q which has a norm

bounded up by:

‖ẽ‖∞ 6
t

q
‖v‖∞ +

t|q|t
2q

+
t

p− 1
β(1 + δRBkey) (6)

We use a strategy similar to [4] to compute (5) with a
fast basis extension but without any error. By scaling the
computation in (5) by an integer γ, any extension errors will be
detected since they will be nonzero modulo γ. After efficiently
getting [γt(c0,d−1+c1,d−1 ·s)]p+αp through a fast conversion
from P to {γt}, one can compute:

r = (γt[c0,d−1 + c1,d−1 · s]p − ([γt(c0,d−1 + c1,d−1 · s)]p +αp))/p

= (γt[c0,d−1 + c1,d−1 · s]p − γ[t(c0,d−1 + c1,d−1 · s)]p)/p−α
+ (γ[t(c0,d−1 + c1,d−1 · s)]p − [γt(c0,d−1 + c1,d−1 · s)]p)/p

= γ

⌊
t
[c0,d−1 + c1,d−1 · s]p

p

⌉
−α+

⌊
γ
[t(c0,d−1 + c1,d−1 · s)]p

p

⌉
= γ ([m]t + bẽe) +

⌊
γ
[t(c0,d−1 + c1,d−1 · s)]p

p

⌉
−α

= γ[m]t + γ bẽe+

⌊
γ
[pẽ]p
p

⌉
−α mod γt. (7)

Now, through the application of Lemma 2 to (7), [m]t can
be computed as (r − [r]γ)/γ mod t.

Lemma 2. Let γ > k/2 and ‖α‖∞ 6 (k − 1)/2. If we have

‖v‖∞ <
q

2t

(
1− k

γ
− 2tβ

p− 1
(1 + δRBkey)

)
− |q|t

2
(8)

then bẽe = 0, and
⌊⌊
γ

[pẽ]p
p

⌉
−α

⌉
γ

=
⌊
γ

[pẽ]p
p

⌉
−α. Hence,

the correction technique from [4] works.

Proof. In Appendix B.

B. Summarising
Here we summarise the above-described decryption steps.

First, c0,d−1 + c1,d−1 · s is computed as an approximation
to (c0(p) + c1(p) · s)/pd−1 with kNTT + nEMM + kNTT−1.
Then (7) is computed modulo γt. Notice that since γt ·
[c0,d−1 + c1,d−1 · s]p = 0(modγt), the expression for r can
be simplified as:

r =
− ([γt(c0,d−1 + c1,d−1 · s)]p +αp)

p
mod γt

= −FBE([γt(c0,d−1 + c1,d−1 · s)],P, γt).p−1 mod γt

which costs knEMM+ knEMMγt to compute if γt fits one ma-
chine word. Then the message is extracted by using the centred
remainder of r modulo γ since [m]t = (r − [r]γ)/γ mod t
under the conditions of Lemma 2.

Notice that as in [4], if γ is chosen as a power of two, divi-
sion by γ can be replaced with a shift. Hence, the decryption
algorithm has a computational cost of:

k NTT + 2kn EMM + k NTT−1 + kn EMMγt.

C. Proposed HPR-based Homomorphic Multiplication

In this section, an HPR-based method for FV homomor-
phic multiplication is proposed. We consider two ciphertexts
ct = (c0(Y), c1(Y)) and ct′ = (c′0(Y), c′1(Y)), with
their elements represented in HPR, encrypting respectively
m and m′, such that c0 + c1 · s = ∆[m]t + v + rq and
c′0 + c′1 · s = ∆[m′]t + v′ + r′q where r and r′ satisfy:

‖r‖∞, ‖r′‖∞ 6
δRBkey + 1

2
+ 1︸ ︷︷ ︸

r∞

. (9)

The polynomial digits are assumed to be bounded in a
similar way to how they were bounded during decryption
in Section III-A, i.e. for (i, j) ∈ {0, 1} × {0, . . . , d −
1}, ‖ci,j‖∞, ‖c′i,j‖∞ 6 β · p with β ' k/2.

Until now, we only needed to represent the digit of index
d− 1 in basis P , since we were dealing with elements of R
modulo q. However, during homomorphic multiplication, the
first product in (2) is not reduced modulo q. Therefore we have
to extend the digits of index d− 1 to the basis P ×Bsk. This
extension is done exactly with the approach of [5], denoted
HPS in the rest of the paper. First, FBE(ci,d−1,P,Bsk) =
[ci,d−1]p +αi · p is computed. Then, αi is produced as:

αi =

 k∑
j=1

[
ci,d−1

pj
p

]
pj

pj

 (10)

by using floating point operations to compute the quotients and
by rounding to the nearest integer. Finally, the term αi · p is
subtracted from the intermediate result. The lifting procedure
of one digit has a practical complexity of n(k2+3k+1) EMMs
and n(k + 1) Floating-Point Operations (FPOs).

Note that the approximation of (10) with floating point
arithmetic may lead to an erroneous computation of αi. There
is a region Z+ 1

2 ± ε, where ε is related to the used precision
and the number of moduli in the basis P (|ε| < 2−50 for IEEE
754 double precision and k < 8), to which the value computed
in (10) may belong before rounding, causing a possible error
of at most 1. While one can detect when this happens, and
redo the computation with a higher precision to reduce ε, we
have chosen, as in [5], to skip this error detection. We will
discuss the possible effects of this choice in Remark 1.

At this point we aim at computing (2). To do so we start
by computing the NTTs of all the digits of the two input
ciphertexts (4d(2k + 1) NTTs in total). Then the product
(c̃0(Y), c̃1(Y), c̃2(Y)) is computed with a Karatsuba pattern.

The products of polynomials in Y are performed as usual,
i.e. in the power basis, and the products of digits, which are in
NTT form, are made component-wise. Since the product is not
reduced modulo q, no reduction modulo Y d is done. Thus we
obtain polynomials of degree (2d− 2) in Y . The division by
q = pd and the rounding can be approximated by computing
only the d−1 MSDs of the products. Nonetheless, in order to
reduce the noise added by this approximation, we also keep
the carry coming from the digits of index d− 1.

Lemma 3. Let i ∈ {0, 1, 2} and bc̃i,d−1/pe − αi,d−1 be the
carry coming from c̃i,d−1 with ‖αi,d−1‖∞ 6 (k − 1)/2 (see
Section II-B1). We have:⌊
c̃i,d−1

p

⌉
−αi,d−1+c̃i,d+· · ·+c̃i,2d−2 ·pd−2 =

c̃i
q

+ei (11)

with: ‖ei‖∞ 6 6δRtβ
2p

(
d− 1

p− 1
− 1− p−d

(p− 1)2

)
+
k

2︸ ︷︷ ︸
Be

. (12)

Proof. In Appendix C.

The three polynomials of degree d − 1 in Y described in
Lemma 3 approximate (2) with an error ei. They may be
interpreted as encrypting [m·m′]t. The next proposition states
the inherent noise of this new ciphertext, depending on the
input noises v and v′.

Proposition 1. For i ∈ {0, 1, 2}, let ĉi =
⌊
c̃i,d−1

p

⌉
−αi,d−1 +∑2d−2

j=d c̃i,j · pj−d as in (11), then we have:

ĉ0 + ĉ1 · s+ ĉ2 · s2 ≡ ∆ · [m ·m′]t + v̂ mod q

with: ‖v̂‖∞ 6δRt (r∞ + 1/2) (‖v‖∞ + ‖v′‖∞)

+ δRmin(‖v‖∞, ‖v′‖∞)/2 + t2δR(1 + r∞)

+Be
(
1 + δRBkey + δ2

RB
2
key

)
+ 1/2(t+ 1)

(13)

and where Be is as in (12) and r∞ is as in (9).

Proof. In Appendix D.

Remark 1. In the case where an error has occurred in the
HPS basis extension, before the multiplication, then we would
operate on ci+qu with ‖u‖∞ = 1 (or c′i+qu

′ with ‖u′‖∞ =
1). In this case r∞ would increase to 3(δRBkey+1)/2+1. As
explained in [5, Section 4.5], this would only impact the size
of δRt (r∞ + 1/2) (‖v‖∞ + ‖v′‖∞) by less than 3% in the
worst case. Considering that this error occurs with probability
smaller than 4n ·2−50 ≤ 2−32 on each multiplication (for n ≤
216), its effect on the noise growth in practice is negligible.

In practice, after having computed (c̃0(Y), c̃1(Y), c̃2(Y)),
the carries of c̃0,d−1 and c̃1,d−1 are computed and stored apart.
These are then added after the relinearisation step to the final
output to reduce the overall computational complexity. The
computation of the two carries requires 2(2k + 1) NTT−1 to
leave the NTT representation, and 2 × C1_carry. Moreover, the
carry generated by c̃2,d−1 is only computed and propagated
during the relinearisation step. Therefore, at this point the three
elements ciphertext has the d−1 MSDs of c̃0 and c̃1 and the d
MSDs of c̃2 in NTT representation; and the two carries stored
apart in coefficient representation.

Computational cost. Overall, assuming that each vector-
matrix product is performed with a naive algorithm, the
homomorphic multiplication (before relinearisation) requires:

Cmult. = n(4k2 + 12k + 4)EMMs + n(4k + 4)FPOs
+4d(2k + 1) NTTs + 2(2k + 1) NTTs−1

+3nd(2k + 1)(d+ 3)/2 EMMs + 2 · C1_carry

.

D. Relinearisation

At the beginning of relinearisation, the d MSDs of c̃2

are converted from the NTT to the canonical domain at
a cost of d(2k + 1) NTT−1. Then, carry propagation is
applied and the Least Significant Digit (LSD) is discarded,
producing ĉ2, as per Proposition 1. By construction, the digits
a = ([a0,P ,a0,B], . . . , [ad−1,P ,ad−1,B])HPR that result from
propagating carries satisfy:[

Y if−1
P∪B([ai,P ,ai,B])

]
q

=
[
Y iFBE(ai,P ,P, {q})

]
q

(14)

where f−1
P∪B corresponds to reverting the RNS representation

with respect to the (P,B) basis (see (3)). Concretely, this
means that once the carry propagation has been done, the
residues of ĉ2 in base B are no longer required for the
relinearisation process. [ĉ2 · s2]q can be rewritten as:

[ĉ2 · s2]q =

[
d−1∑
i=0

FBE(ĉ2,i,P, {q}) · s2Y i

]
q

=d−1∑
i=0

k∑
j=1

[
ĉ2,i

pj
p

]
pj

p

pj
Y is2

q

. (15)

Thus, we can define D(ĉ2) and P(s2) as the vectors with
entries ri,j =

[
ĉ2,i

pj
p

]
pj

and ψi,j =
[
p
pj
Y is2

]
q
, respectively,

for 0 6 i 6 d−1 and 1 6 j 6 k. Clearly, the ‖ri,j‖∞ < pj/2
are small, and

[
〈D(ĉ2),P(s2)〉

]
q

= [ĉ2 · s2]q .

The relinearisation-key (
−−→
rlk) is composed of pseudo-

encryptions of the ψi,j values. To produce the pseudo-
encryption with respect to ψi,j , a Ring Learning with Errors
(RLWE) sample ([−(ai,j · s+ ei,j)]q)), ai,j) is drawn, and
p
pj
·s2 is added to the i-th digit of the first element. Then, the

whole relinearisation key is stored in NTT form.

Remark 2. Note that, since ‖s2‖∞ 6 δRB
2
key < pj for

moduli pj of practical size, p
pj
· s2 is representable as a

single HPR digit. Thus, the RLWE samples used to mask the
ψi,j = p

pj
· Y i · s2, for a fixed i and 1 ≤ j ≤ k, do not need

to have a degree higher than i in Y . The d− 1− i MSDs of
the k elements of the relinearisation-key associated with these
ψi,j can be set to zero. In practice, RLWE samples are drawn
with respect to a modulus pi 6 pd, but with an error of same
standard deviation σerr. This technique allows us to not only
reduce the size of

−−→
rlk, but also to further reduce the practical

complexity of the relinearisation.

When a small polynomial ri,j has been extracted from a
residue modulo pj , it is easily extended to the base (P,Bsk)
through a simple copy-paste operation. Then, since its rep-
resentation is a single digit, the computation of its NTT form
only requires (2k+1) NTTs. In the next step, the polynomials
ri,j are multiplied by the corresponding

−−→
rlk elements and the

results are accumulated in ĉ0, ĉ1.
The relinearisation step causes an increase in the noise asso-

ciated with the ciphertext. More concretely, for a homomorphic
multiplication result (ĉ′0, ĉ

′
1), one gets:

[ĉ′0 + ĉ′1s]q =
[
ĉ0 + ĉ1 · s+ 〈D(ĉ2),P(s2)−

(−→e +−→a · s)〉+ 〈D(ĉ2),−→a 〉 · s
]
q

=
[
ĉ0 + ĉ1 · s+ ĉ2 · s2 − 〈D(ĉ2),−→e 〉

]
q

=
[
ĉ0 + ĉ1 · s+ ĉ2 · s2 + erelin

]
q
.

The extra noise caused by this step is bounded by:

‖erelin‖∞ 6 δR · d ·Berr · (p1 + · · ·+ pk). (16)

Computational cost. After the carry propagation of the
d MSDs of c̃2, we have to compute the NTTs of 1-digit
polynomials ri,j in base (P,Bsk) for a total of dk(2k +
1) NTTs. Then, for each j, the single-digit polynomials ri,j
are multiplied by two relinearisation-key elements of degree
i, resulting in a total of nkd(d + 1)(2k + 1) elementary
products. The results of these products are added to ĉ0 and
ĉ1. Once all intermediate products have been accumulated,
2d(2k + 1) NTT−1s are used to obtain the result in the
canonical domain. Finally, carry propagation is applied to ĉ′0
and ĉ′1. Thus, the total cost of the relinearisation step is:

Crelin. = dk(2k + 1) NTTs + 3d(2k + 1) NTTs−1

+nkd((d+ 1)(2k + 1) + 1) EMMs
+(3d− 2)C1_carry

.

Remark 3. The bit size of the noise grows linearly with
the multiplicative depth L. Consequently, when the depth L
reaches around Lmax/d, the noise affects more than one digit.
At this point one can apply a coarse grain decomposition to
decrease the practical complexity of the relinearisation. The
sum with index j in (15) can be computed by the decomposition
function prior to the product with the relinearisation key.
With this technique, the decomposition polynomials become
ri =

∑k
j=1

[
ĉ2,i

pj
p

]
pj

p
pj

, and the new relinearisation key

contains ψi =
[
Y is2

]
q
. Since ri is no longer a single

residue, its conversion toward base B is not a simple copy-
paste. However, the carry propagation performed prior to the
relinearisation already involves such a base conversion. So,
ri is obtained in the full RNS base at no extra cost. Moreover,
one may disregard an increasingly larger number of LSDs
during relinearisation as noise grows. Assuming that only the
d′ MSDs are taken into account for ĉ2,i (in the case where
L ' (d− d′)Lmax

d), the cost boils down to:

Crelin.,d′ = d′(2k + 1) NTTs + 3d′(2k + 1) NTTs−1

+nd′(d′ + 1)(2k + 1) EMMs
+(3d′ − 2)C1_carry

.

IV. RELATED ART

A first adaptation of FV to the RNS was achieved in [4]. Due
to the reduced complexity, speedups from 2 up to 4 and from
5 up to 20 were achieved for the homomorphic multiplication
and decryption operations, respectively, in comparison to an
implementation based on a generic multiprecision library.
Later, [5] proposed modifications to [4], namely by computing
part of the RNS basis extensions with floating point arithmetic.

It has been noticed in [9] that for similar cryptographic
parameters, [4] offers a lower multiplicative depth than [5].
However as pointed out in [10], this observation results from
a misimplementation of the techniques of [4] in the SEAL and
PALISADE libraries. Thus, since there is no clear advantage
of using one version over the other, herein, we make use of
techniques from both [4] and [5].

V. COMPLEXITY ANALYSIS

The complexities of our HPR-based variant of the FV
scheme and of [4], [5] are presented in Table I which, for
simplicity, associates both forward and inverse NTTs with the
NTTs column. KRNS corresponds to the size of the RNS
bases of [4], [5]. Both [4], [5] make use of secondary bases
of size KRNS + 1. In HPR, each polynomial coefficient is
associated with d digits, each of them represented in an RNS
basis of size k, and a secondary RNS basis with k+1 moduli.
If both systems target the same security level and use moduli
of similar bitwidth, the value of k will be about d times smaller
than KRNS , since q1 . . . qKRNS

≈ (p1 . . . pk)d.

A. Decryption

In all schemes, the computational cost is dominated by the
amount of NTTs. A radix-2 NTT requires n

2 log2 n EMMs [11].
In practice, [4], [5] require KRNS forward NTTs and KRNS

inverse NTTs; whereas k forward NTTs and k inverse NTTs
are required for the HPR-based decryption. As a consequence,
the cost of decryption in HPR is nearly d times smaller than
that of [4], [5]. For security reasons, KRNS and K = d×k are
in O(n). Hence, since NTTs have a quasi-linear complexity,
the asymptotic complexity of the decryption is reduced from:

C(DecRNS) ∈ O(n2 log n) to C(DecHPR) ∈ O(n1+ε log n)

when k = Kε, with 0 6 ε 6 1 (ε = 1 being the RNS variant,
and ε = 0 the radix-p1 positional variant). As a consequence,
when the number of digits d increases, k and ε decrease,
which results in a more efficient decryption algorithm. In
particular for d = K, and thus k = 1, we obtain a quasi-
linear complexity.

B. Homomorphic Multiplication

Using the same method than previously, since KRNS and
K ∈ O(n), the asymptotic complexity of [4], [5] is:

C(MultRNS) ∈ O(n3 log n)

while for our HPR variant it is reduced to:

C(MultHPR) ∈ O(n2+ε log n+ n3) = O(n3).

Since asymptotically the choice of ε does not impact the
complexity of homomorphic multiplication, it would seem best
to take ε = 0 so as to minimise the cost of the decryption
procedure. However, homomorphic multiplication is executed
more often and is the practical bottleneck of these schemes.
Hence, one should rather minimise its computational cost by
considering the optimal kn, or equivalently dn, in dimension
n, that minimises the costs presented in Table I.

Remark 4. When Remark 3 is considered, the asymptotic
complexity of relinearisation can be reduced to

O(dkn log(n) + nd2k) = O(n2 log(n) + n3−ε) = O(n3−ε).

VI. EXPERIMENTAL EVALUATION

The NTT-based Fast Lattice (NFL) library [7] was adapted
to handle moduli with the bitwidths featured in Table II. Our
HPR-based variant and [4], [5] were implemented in C++,
using the modified NFL library [7]1. They were compiled
with gcc 8.3.0 and executed on a single thread on an Intel
Core i7-6700K processor running at 4.0GHz with 32GB of
main memory, operated by CentOS 7.3. Experimental results
for the proposed HPR-based scheme and [4], [5], for the
cryptographic parameters presented in Table II, are depicted
in Table III.

Asymptotically, decryption has a speed-up that is linear with
n. This behaviour is more noticeable for n ≥ 214 in Table III
because therein k = 1 is featured for n = 213 and k = 3
for n ≥ 214, since k was chosen to minimise the complexity
of homomorphic multiplication. Maximum speed-ups of 8.6
and 8.0 are achieved when the proposed HPR-based scheme
is compared with [4] and [5], respectively, for n = 216.

Table III suggests that the theoretically predicted O(log n)
speed-up for homomorphic multiplication is only achieved
in practice for large parameters. While the novel HPR-based
representation brings performance improvements to the mul-
tiplication part of the procedure (i.e. without relinearisation),
that are noticeable for most parameters, the complexity im-
provements pertaining to relinearisation only take effect for
n ≥ 216. This suggests that the proposed HPR-based scheme
is preferable to [4], [5] for applications relying on sums of
products, wherein relinearisation is only applied once, after
computing the homomorphic sum of the optimised products,
or when large parameters (n ≥ 216) are considered. Maximum
speed-ups regarding the whole procedure of 2.0 and 1.6 are
achieved when the proposed scheme is compared with [5] and
[4], respectively.

Moreover, we have measured the depth reached in practice
for each scheme by squaring several ciphertexts until they
did not decrypt correctly and keeping the smallest value as
the practical multiplicative depth. We have not observed any
significant difference between the HPR and the RNS variants,
which confirms the conclusions of [10].

CONCLUSION

Whereas state-of-the-art implementations of FV make use of
the RNS, the FV scheme requires operations that are inefficient
to implement in this representation. In particular, division and
rounding require large basis extensions, and the representation
of small values is ample. Herein, an alternative approach to
accelerate FV was proposed, supported on HPR. Divisions
are approximated by considering only the MSDs of HPR
values, reducing the asymptotic complexity of decryption from

1The code is available at https://gitlab.com/fvhpr/hare

Scheme DECRYPTION MULTIPLICATION & RELINEARISATION
NTTs EMMs FPOs NTTs EMMs FPOs

[4] 2dk 3ndk − (dk)2 + 16dk + 7 n(12(dk)2 + 35dk + 17) -
[5] 2dk ndk n(1 + dk) (dk)2 + 16dk + 7 n(12(dk)2 + 35dk + 14) n(10dk + 13)

HPR 2k 3nk − 2dk2 + (23d+ 4)k + 7d+ 2 n((2d2 + 8d+ 4)k2 + (5d2 + 28d+ 8)k + 2d2 + 10d) n(4k + 4)

Table I: Computational costs of decryption and homomorphic multiplication for the proposed HPR-based scheme, [4] and [5].

Par. n log2 q KRNS
log2 qi
(RNS) K = k × d

log2 pi
(HPR)

A 213 275 5 55 5 = 1× 5 55
B 214 549 9 61 9 = 3× 3 61
C 215 1098 18 61 18 = 3× 6 61
D 216 2196 36 61 36 = 3× 12 61

Table II: Parameters achieving at least 100 bits of security
according to the estimator of [12] with σerr = 8.0. Values of k
and d were computed by minimizing the cost of homomorphic
multiplication presented in Table I, assuming that 1 NTT =
n log2(n) EMMs and 1 FPO = 1 EMM.

Par. Scheme Dec. Mult. Rel. Mult. + Relin
A HPR 0.75 32.0 24.7 56.7
A [4] 2.64 28.3 13.3 41.6
A [5] 2.36 36.8 13.2 50.0
B HPR 6.46 132 135 267
B [4] 12.8 157 97 254
B [5] 12.1 199 95 294
C HPR 14.7 705 892 1,597
C [4] 64.5 840 775 1,615
C [5] 58.5 1,164 784 1,948
D HPR 33.2 3,925 5,688 9,613
D [4] 285 8,227 7,118 15,345
D [5] 267 12,298 7,018 19,316

Table III: Execution time (ms) of decryption and homomorphic
multiplication for the HPR-based variant, [4] and [5].

O(n2 log n) to O(n log n). Since the homomorphic multipli-
cation operation also depends on division and rounding, it also
benefits from the use of HPR. Moreover, since in HPR small
values can be represented as a single digit, the amount of
NTTs one needs to compute during relinearisation is signifi-
cantly reduced. As NTTs no longer dominate the asymptotic
complexity of homomorphic multiplication, its complexity is
reduced from O(n3 log n) to O(n3), when compared to RNS-
based approaches. Experimental speedups of up to 8.0 and
8.6 for the decryption operation and of up to 2.0 and 1.6 for
the homomorphic multiplication are achieved when compared
with two state-of-the-art schemes. The experimental results
also confirm the asymptotic gain since the speed-ups increase
as n grows.

ACKNOWLEDGEMENTS

This work was partially supported by Portuguese funds
through Fundação para a Ciência e a Tecnologia (FCT) with
reference UIDB/50021/2020 and by the Ph.D. grant with
reference SFRH/BD/103791/2014; by the ANR grant AR-
RAND 15-CE39-0002-01; through the Pessoa/Hubert Curien
programme with reference 4335 (FCT)/40832XC (CAMPUS-
FRANCE); by EU’s Horizon 2020 research and innovation
programme under grant agreement No. 779391 (FutureTPM).

This work was also partially supported by CyberSecurity
Research Flanders with reference number VR20192203, by
the Office of the Director of National Intelligence (ODNI) and
by Intelligence Advanced Research Projects Activity (IARPA)
via Contract No. 2019-1902070006. J. Eynard was initially
supported by University of Toulon (France) for this project.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ODNI or IARPA.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding any
copyright annotation therein.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford, CA, USA, 2009, aAI3382729.

[2] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” Cryptology ePrint Archive, Report 2012/144, 2012, http:
//eprint.iacr.org/.

[3] L. Sousa, S. Antao, and P. Martins, “Combining residue arithmetic to
design efficient cryptographic circuits and systems,” IEEE Circuits and
Systems Magazine, vol. 16, no. 4, pp. 6–32, Fourthquarter 2016.

[4] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A Full RNS Variant
of FV Like Somewhat Homomorphic Encryption Schemes,” in Selected
Areas in Cryptography – SAC 2016, R. Avanzi and H. Heys, Eds. Cham:
Springer International Publishing, 2017, pp. 423–442.

[5] S. Halevi, Y. Polyakov, and V. Shoup, “An Improved RNS Variant of
the BFV Homomorphic Encryption Scheme,” in Topics in Cryptology –
CT-RSA 2019, M. Matsui, Ed. Cham: Springer International Publishing,
2019, pp. 83–105.

[6] K. Bigou and A. Tisserand, “Hybrid Position-Residues Number System,”
in ARITH: 23rd Symposium on Computer Arithmetic, J. Hormigo,
S. Oberman, and N. Revol, Eds. Santa Clara, CA, United States:
IEEE, Jul. 2016. [Online]. Available: https://hal.inria.fr/hal-01314232

[7] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O.
Killijian, and T. Lepoint, Topics in Cryptology - CT-RSA 2016:
The Cryptographers’ Track at the RSA Conference 2016, San
Francisco, CA, USA, February 29 - March 4, 2016, Proceedings.
Cham: Springer International Publishing, 2016, ch. NFLlib: NTT-
Based Fast Lattice Library, pp. 341–356. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-29485-8_20

[8] A. P. Shenoy and R. Kumaresan, “Fast Base Extension Using a
Redundant Modulus in RNS,” IEEE Trans. Comput., vol. 38, no. 2, pp.
292–297, Feb. 1989. [Online]. Available: http://dx.doi.org/10.1109/12.
16508

[9] A. Qaisar Ahmad Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veer-
avalli, and K. Rohloff, “Implementation and Performance Evaluation of
RNS Variants of the BFV Homomorphic Encryption Scheme,” IEEE
Transactions on Emerging Topics in Computing, pp. 1–1, 2019.

[10] J.-C. Bajard, J. Eynard, P. Martins, L. Sousa, and V. Zucca, “Note on the
noise growth of the RNS variants of the BFV scheme,” Cryptology ePrint
Archive, Report 2019/1266, 2019, https://eprint.iacr.org/2019/1266.

[11] T. Pöppelmann and T. Güneysu, “Towards Efficient Arithmetic for
Lattice-Based Cryptography on Reconfigurable Hardware,” in Progress
in Cryptology – LATINCRYPT 2012, A. Hevia and G. Neven, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 139–158.

[12] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
Learning with Errors.” Journal of Mathematical Cryptology, vol. 9, pp.
169–203, October 2015.

[13] J. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved Security for a
Ring-Based Fully Homomorphic Encryption Scheme,” in Cryptography
and Coding, ser. Lecture Notes in Computer Science, M. Stam, Ed.
Springer Berlin Heidelberg, 2013, vol. 8308, pp. 45–64. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-45239-0_4

APPENDIX A
PROOF OF LEMMA 1

A valid encryption of [m]t satisfies c0 + c1 · s = ∆[m]t +
v +uq. Thus we have that the approximation in (4) satisfies:

[c0,d−1 + c1,d−1s]p = ∆[m]t+v+qu
pd−1 −

∑d−2
i=0 (c0,i + c1,i ·

s)pi−d+1 + εp

with e = −
∑d−2
i=0 (c0,i + c1,i · s)pi−d+1. The norm of e can

thus be bounded as
‖e‖∞ ≤

∑d−2
i=0 (βp + δRβpBkey)pi−d+1 ≤ (βp +

δRβpBkey)p
d−1−1
p−1

1
pd−1 ≤ p

p−1β(1 + δRBkey).

APPENDIX B
PROOF OF LEMMA 2

First, we show that if

‖ẽ‖∞ <
1

2

(
1− k

γ

)
(17)

is satisfied then bẽe = 0 and
∥∥∥⌊γ [pẽ]p /p

⌉
−α

∥∥∥
∞
< γ/2. In

particular, bẽe = 0 since k, γ > 0 and hence ‖ẽ‖∞ < 1/2. In
addition, [pẽ]p = pẽ since ‖pẽ‖∞ < p/2. Thus,∥∥∥⌊γ [pẽ]p /p

⌉
−α

∥∥∥
∞

=
∥∥∥γpẽ−[γpẽ]p

p −α
∥∥∥
∞

< γp(1−k/γ)+p
2p + k−1

2 ≤ γ/2.
Finally, it will be shown that (8) implies (17). This is

achieved by exploiting (6) to bound ‖ẽ‖∞, and as consequence
‖v‖∞:

‖ẽ‖∞ 6
t

q
‖v‖∞+

t|q|t
2q

+
t

p− 1
β(1+δRBkey) <

1

2

(
1− k

γ

)
.

Through a manipulation of the previous expression, (8) is
finally reached:

t
q‖v‖∞+ t|q|t

2q + t
p−1β(1+δRBkey) < 1

2

(
1− k

γ

)
⇔ ‖v‖∞

< q
2t

(
1− k

γ −
2tβ
p−1 (1 + δRBkey)

)
− |q|t2 .

APPENDIX C
PROOF OF LEMMA 3

For i ∈ {0, 1, 2} we have by definition: c̃i =
∑2d−2
j=0 c̃i,j ·pj .

Moreover, given that the digits of cl and c′l, for l = 0, 1, have
their norm smaller than βp then: for i ∈ {0, 2} and for j ∈ {0, . . . , d− 2},

‖c̃i,j‖∞ 6 δRt(j + 1)β2p2;
for j ∈ {0, . . . , d− 2}, ‖c̃1,j‖∞ 6 6δRt(j + 1)β2p2.

(18)
Now by using the second bound for every c̃i,j we can write:
‖c̃i,0 + · · ·+ c̃i,d−2 · pd−2 + ([c̃i,d−1]p + pαi,d−1) · pd−1‖∞

6 6δRtβ
2p2(1 + 2p + · · · + (d − 1)pd−2) +

(
1
2 + k−1

2

)
pd

6 6δRtβ
2p2
(

(d−1)pd−1

p−1 − pd−1
p(p−1)2

)
+ k

2p
d.

Recalling that pd = q, we have:

(⌊
c̃i,d−1

p

⌉
−αi,d−1 + c̃i,d + c̃i,d+1 · p+ · · ·+ c̃i,2d−2 · pd−2

)
= c̃i

q −
c̃i,0+···+c̃i,d−2·pd−2

pd
− [c̃i,d−1]p·pd−1+αi,d−1·pd

pd

and then we deduce (11) with:
ei = − c̃0,0+···+c̃0,d−2·pd−2

pd
− [c̃0,d−1]p·pd−1+α0,d−1·pd

pd
.

In particular, we obtain (12): ‖ei‖∞ 6

6δRtβ
2p
(
d−1
p−1 −

1−p−d

(p−1)2

)
+ k

2 .

APPENDIX D
PROOF OF PROPOSITION 1

Knowing that ∆t = q−|q|t, [m]t · [m′]t = [m ·m′]t+ trm
and v · v′ = ∆rv + [v · v′]∆, we can write:
t

q
(c0 + c1 · s) · (c′0 + c′1 · s) =

t

q
(∆ · [m]t + v +

rq) · (∆ · [m′]t + v′ + r′q) =
t

q

(
∆2[m]t · [m′]t

+∆([m]t · v′ + [m′]t · v) + ∆q([m]t · r′ +
[m′]t · r) + v · v′ + q(v · r′ + v′ · r) + q2r · r′

)
= q−|q|t

q (∆ ([m ·m′]t + trm) + [m]t · v′ + [m′]t · v + rv)

+t(v ·r′+v′ ·r) +(q−|q|t)([m]t ·r′+[m′]t ·r)+ t
q [v ·v′]∆ +

tqr ·r′ = ∆[m·m′]t+[m]t ·v′+[m′]t ·v+rv+t(v ·r′+v′ ·r)

+
t

q
[v ·v′]∆−

|q|t
q

(∆[m ·m′]t + [m]t · v′ + [m′]t · v + rv)
′

+tqr · r + (q − |q|t)([m]t · r′ + [m′]t · r) + qrm − 2|q|trm
+
|q|2t
q
rm = ∆[m ·m′]t + vmult + q([m]t · r′ + [m′]t · r +

rm + tr · r′),
with: vmult = ([m]t · v′ + [m′]t · v + rv)

(
1− |q|tq

)
+t(v · r′ + v′ · r) + t

q [v · v′]∆ −
|q|t
q

∆[m · m′]t

−|q|t ([m]t · r′ + [m′]t · r) −rm|q|t
(

2− |q|tq
)

As shown in [13], we have: ‖rm‖∞ 6
δRt

2
and ‖rv‖∞ 6

δR
2

min(‖v‖∞, ‖v′‖∞). Therefore:
‖vmult‖∞

6 t
2δR(‖v′‖∞ + ‖v‖∞) + δR

2 min(‖v‖∞, ‖v′‖∞)

+tδRr∞(‖v′‖∞ + ‖v‖∞) + t
q

∆
2 + t2

2q∆ +t2δRr∞ + t2δR
6 δRt

(
r∞ + 1

2

)
(‖v‖∞ + ‖v′‖∞)

+ δR
2 min(‖v‖∞, ‖v′‖∞) + 1

2 + t
(

1
2 + tδR(1 + r∞)

)
.

However in the conditions herein considered, we need also
to take into account the errors ei coming from (11), thus:

ĉ0 + ĉ1 · s+ ĉ2 · s2

=
t

q
c0 · c′0 + e0 +

(
t

q
(c0 · c′1 + c1 · c0) + e1

)
· s

+

(
t

q
c1 · c′1 + e2

)
· s2

=
t

q
(c0 + c1 · s) · (c′0 + c′1 · s) + e0 + e1 · s+ e2 · s2.

Therefore, v̂ = vmult +e0 +e1 ·s+e2 ·s2, with ‖e0 +e1 ·s+

e2 ·s2‖∞ 6 Be

(
1 + δRBkey + δ2

RB
2
key

)
. We obtain (13) by

summing the last two bounds.

