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Abstract—This paper introduces a delay modeling formulation
for several Parallel-Prefix Adders in the presence of threshold
voltage variability. A path-based model is derived for the delay
variability of Kogge-Stone, Knowles, Sklansky, Brent-Kung,
Han-Carlson, Ladner-Fischer, and New Adder architectures.
The delay model accuracy is evaluated for the specific adders
on the basis of SPICE Monte-Carlo Simulations at 45 nm and
16 nm nodes. The presented analysis reveals that the proposed
path-based model estimates the maximum delay Probability
Density Function of the particular adder architectures with
sufficient accuracy, assuming 3o intra-die threshold voltage
variations as high as 10% of nominal value. Delay yield
estimations produced by the proposed model are found to
agree with those of Monte-Carlo Simulations for a number
of highly probable critical paths, presenting an error less
than 2%. For the particular adders and technology nodes,
an approximately 10-fold reduction in simulation time is ob-
tained when exploiting the proposed model. The particular
observation indicates that the computational time for delay
yield estimation of Parallel-Prefix Adders can be exponentially
reduced with negligible accuracy loss when the analysis focuses
solely on the Nominal-Maximum Delay critical path. Finally, a
quantitative comparison of prefix adders to the Borrow-Save
Adder is offered, in terms of complexity and susceptibility to
variations.

Index Terms—parallel-prefix adders, critical path, threshold
voltage variations, variability, delay yield

1. Introduction

Under the persistent scaling of integration in nanometer
regime, process parameter variations have emerged as a
major challenge in both design and integration flow [1],
[2]. Process imperfections affect cell delays, leading to
performance and power degradation. Furthermore, the need
of satisfying excessively tight specifications combined with
the timing degradation leads to greater guard-bands as in-
tegration scales, delaying design closure [3]. Hence, con-
sideration of variation mechanisms during timing analysis
reduces chip failure rates and time to market.

Robustness of timing analysis cannot be ensured by a
corner-based analysis, as it cannot capture the prominent-
in-denser-nodes intra-die variations [4]. Hence, a shift in
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Figure 1. Propagate-Generate Network of Sklansky adder. Brown nodes
refer to first-stage propagate-generate cells, black to group propagate-
generate cells, gray to group generate cells, and red to XOR cells. Red
line connects the nodes forming the NMD critical path.

statistical-based methodologies, such as Monte-Carlo and
Statistical Static Timing Analysis, provides the generaliza-
tion of traditional techniques in a variation-prone frame-
work. The aforementioned timing analysis techniques handle
delays as Random Variables (RVs) and Probability Density
Functions (PDFs), respectively. Nowadays, research efforts
focus on Statistical Static Timing Analysis (SSTAs) using
non-Gaussian models [5], [6] and dealing with correlated
RVs [7]. Regarding the statistical nature of delay variables,
lognormal models are suitable for the approximation of
cell delays in sub-threshold regime and present an error of
11% and 16% for the mean and standard deviation of de-
lay, respectively, compared to Monte-Carlo Simulations [8].
Additionally, it is shown that a unified Log-Skew Normal
model for the cell delays and for operation stages ranging
from sub-threshold to super-threshold can accurately predict
the delay yield compared to Monte-Carlo Simulations [9].
However, beyond 40 nm, OCV and AOCV are the main-
stream signoff approaches for EDA tools, with the latter
providing an accuracy compared to that of SSTA with much
less computational effort [10], as well, Liberty Variation
Format-based timing analysis that is able to model the
non-Gaussian timing behavior of path delays [3]. For early
stage delay modeling analysis, Alioto et al. [11] present
a framework for the estimation of path delay variability
that relies on fan-out-of-4 metric and on technology library
characteristics.

Optimizations related to arithmetic circuits, and, es-
pecially, to adder structures, have always been of great
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Figure 2. Probability Density Functions of the sum delay of a Mirror FA
cell in the presence of (a) 10% and (b) 30% intra-die threshold voltage
variability.

importance, as they constitute fundamental blocks of digital
processing units. Furthermore, they imply timing and power
insights for more complex structures as well. Given the
process integration variability and atomic-scale uncertainty
in nanometer integration nodes, evaluation of delay vari-
ability guides necessary design countermeasures. In this
context, Alioto and Palumbo propose a model that evaluates
the sensitivity of Full-Adder cells to supply voltage vari-
ations [12]. Bernstein er al. quantify the delay variability
of selected 16-bit adders under certain variation mecha-
nisms [13]. Furthermore, Papachatzopoulos and Paliouras
evaluate the variability of Ripple-Carry Adders and Borrow-
Save Adders under threshold voltage (V4,) variations, and
propose two interconnection transformations for the Borrow-
Save Adder that reduce delay variability [14]. Also, they
introduce a delay model, suitable for SSTA, for the estima-
tion of maximum delay PDF for Ripple-Carry and Borrow-
Save Adders under delay variations [15]. Furthermore,
the advantages of Residue Number System (RNS)-based
Multiplier-Accumulators (MACs) for variation-tolerant ar-
chitectures have been revealed compared to their binary
counterparts [16]. Clearly, the selection of an adder archi-
tecture can significantly affect the delay variability charac-
teristics of the overall processing system.

Parallel-prefix adders are of great interest as they are a
common choice for fast addition. This paper proposes a de-
lay model for the radix-2 Kogge-Stone, Knowles [2,1,1, 1],
Sklansky, Brent-Kung, Han-Carlson, Ladner-Fischer and
New (1,1,1) adders under Vj, variations at 45-nm and
16-nm technology nodes. The proposed model assumes a
Gaussian distribution, as Stable and Log-Normal distribu-
tions are not found to substantially improve fitting accuracy
for values of intra-die V4, variability as much as 10% in the
particular context. Fitting parameters of the proposed model
are derived using SPICE Monte-Carlo (M.C.) Simulations of
the Nominal Maximum-Delay critical path of the Parallel-
Prefix Adders under study.

The main contribution of this paper is that it demon-
strates that a relatively simple model can accurately describe
the maximum delay behavior under a certain variability.
Furthermore and in the process of model derivation, several
Parallel-Prefix Adders are evaluated and compared. In addi-

Fitted Gaussian Architecture | F#Transistors Architecture ##Transistors
i i Knowles 1076 Kogge-Stone 1076
Sklansky 838 Brent-Kung 754
Han-Carlson 838 Ladner-Fischer 768
New 838 Borrow Save 896

tion, the Borrow-Save Adder (BSA) is also considered, as it
has been recently reported to perform well under variation. It
is found that under the given assumptions, several trade-offs
can be exploited in terms of complexity and susceptibility
to variations.

The remainder of the paper is structured as follows.
Section 2 introduces the proposed path-based modeling
formulation for the Parallel-Prefix Adders, while Section 3
assesses the fitting accuracy of the proposed path-based
PDFs compared to SPICE-level Monte-Carlo Simulations.
Finally, Section 4 discusses conclusions.

2. Proposed Path-Based Delay Model

The proposed formulation provides estimations for the
maximum delay distribution of a set of radix-2 Parallel-
Prefix Adders using statistical estimations of the Nominal
Maximum-Delay (NMD) critical path. The model targets
delay variations that origin from atomic-level deviations
of dopant atoms, commonly known as Random Dopant
Fluctuations, whose impact can be abstracted in circuit level
as threshold voltage deviations [13]. Interest is focused on
threshold voltage variations as this is the leading contributor
of variability regarding timing in several adder architec-
tures [13]. Furthermore, variations manifested in channel
length can be mapped to threshold voltage deviations as
explained by the DIBL effect [17]. However, channel length-
related variations take place systematically in a technology
process and their effect is predictable [1]. Less major mech-
anisms, such as mobility and gate oxide thickness variations,
impact on threshold voltage as well.

Parallel-Prefix Adders consist of a network of group
propagate and group generate cells that produce the re-
lated propagate and generate signals for a set of bit posi-
tions. Indicatively, Fig. 1 depicts the structure of Propagate-
Generate (PG) network for a 16-bit Sklansky adder. The
performance of Parallel-Prefix Adders is of particular inter-
est as it scales proportionally to logs N + ¢, where N is
the adder bit length and c is a constant dependent on the
particular architecture [18]. Particularly, adders investigated
in this paper are Knowles [2, 1, 1, 1] [19], Kogge-Stone [20],
Sklansky [21], Brent-Kung [22], Han-Carlson [23], Ladner-
Fischer [24], and New (1,1,1) [25] architectures. Adder
architectures are sized for minimum area and using low-
power transistors, i.e., with relatively high threshold voltage
in order to substantially reduce leakage power dissipation.
Indicative complexity of the adders under study, quantified
in terms of transistor count, are reported in Table 1 assuming
16-bit implementations. The reported figures refer to static
CMOS implementations for the constituent cells.
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Figure 3. Monte-Carlo histograms and fitted Probability Density Functions
for 16-bit (a) Knowles, (b) Kogge-Stone, (c) Sklansky, (d) Brent-Kung,
(e) Han-Carlson, (f) Ladner-Fischer, and (g) New adders.

2.1. Modeling Approaches

Commonly, statistical methods assume that the under-
lying variations follow a Gaussian distribution; however, a
Stable distribution may more accurately model delay vari-
ation in certain cases. As an illustrative example, Fig. 2
shows the delay PDF observed at the sum output of a Mirror
Full-Adder (FA) cell under intra-die V4, variations and for
a specific input transition pattern. The reported (a) and (b)
cases in Fig. 2 correspond to Monte-Carlo Simulations with
3o threshold voltage variations equal to 10% and 30% of the
nominal threshold voltage value, respectively. It is shown
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Figure 4. QQ plots for Gaussian distribution and M.C. SPICE delays for
(a) Knowles, (b) Kogge-Stone, (c¢) Sklansky, (d) Brent-Kung, (e) Han-
Carlson, (f) Ladner-Fischer, and (g) New adders.

that, as the magnitude of variations increases, FA delay
is restricted by a minimum delay threshold, and, hence,
creates a positive skewed PDF, i.e., with a heavier tail in
the right side of the distribution. Fig. 2 reveals that a Stable
distribution describes more accurately the delay of the FA
sum output than the fitted Gaussian distribution. In the
context of threshold voltage variations not exceeding 10%
of their nominal value and, furthermore, for sufficient long
logic depth, as that of the examined architectures, Gaussian
modeling of delay distribution provides sufficient accuracy
as shown in Section 3.



TABLE 2. SPICE DELAY ESTIMATORS UNDER Vi, VARIATIONS

@ 45 nm

. M.C. SPICE
Architecture 1 (0S) = %) T 30 (05) oTh
Knowles 0.4189 9.6303 0.4478 0.0229
Kogge-Stone 0.3335 7.7172 0.3566 0.0231
Sklansky 0.4481 | 10.3807 0.4792 0.0231
Brent-Kung 0.5450 | 10.6058 0.5768 0.0194
Han-Carlson 0.3950 8.4109 0.4202 0.0212
Ladner-Fischer 0.4802 9.7081 0.5094 0.0202
New 0.4795 | 10.3447 0.5105 0.0215
Borrow-Save 0.1614 4.6073 0.1752 0.0285

TABLE 3. SPICE DELAY ESTIMATORS UNDER Vi, VARIATIONS

@ 16 nm
: M.C. SPICE
Architecture RG] &%) 7+ 30 (05) i

Knowles 0.2774 9.6893 0.2568 0.04254
Kogge-Stone 0.1847 7.6339 0.2076 0.04132
Sklansky 0.2434 | 11.1929 0.2770 0.04598
Brent-Kung 0.2987 | 11.4040 0.3329 0.03817
Han-Carlson 0.2205 8.0932 0.2448 0.03669
Ladner-Fischer 0.2653 9.8294 0.2948 0.03703
New 0.2626 | 10.9370 0.2954 0.04163
Borrow-Save 0.1221 5.3839 0.1383 0.04407

Given the need for sufficiently accurate modeling of
maximum-delay PDFs, SPICE-level Monte-Carlo Simula-
tions are performed for the examined adder architectures
under intra-die V4, variations at 45-nm (1.1 V nominal
voltage) and 16-nm (0.9 V nominal voltage) nodes. In the
following analysis, values of threshold voltage are assumed
to be independent and identically distributed, following a
Gaussian distribution with 3oy, = 0.1Vihpom unless oth-
erwise stated. Fig. 3 depicts the histograms of the adder
delays for a sufficiently large number of paths, obtained
by SPICE simulations under V4, variation, along with the
fitted Gaussian, Stable and Log-Normal PDFs at a 16-nm
node. Delays reported correspond to 16-bit architectures and
1000 simulation iterations for the remainder of this paper.
The methodology of path selection for the Monte-Carlo
Simulations is detailed in Section 3. As Fig. 3 indicates,
Stable and Log-Normal distributions provide almost the
same fitting accuracy as the Gaussian; hence, adoption of
Gaussian distribution for the modeling of maximum delay
behavior provides sufficient accuracy and ease modeling
formulations for the particular circuits and in the particular
variability context. The choice of Gaussian distribution is
further justified by the Quantile-Quantile (QQ) plots of
Fig. 4 that evaluate the achieved Gaussian distribution fitting
on the SPICE maximum-delay simulations under variations.

2.2. Proposed Delay Model

In the following we propose a simple delay model for the
adders under study that describes the PDF of the maximum
delay. As intra-die variation mechanisms are expected to
dominate over inter-die variations in technologies of a few
nanometers, the proposed model focuses on them.

m 10% Vj, variation Il 20% V4, variation
m 25% Vi, variation B 30% Vi, variation
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Figure 5. Variability (o/p) for certain percentages of threshold voltage
variation at 16 nm.

TABLE 4. PERCENTAGE FREQUENCY REDUCTION CAUSED BY
THRESHOLD VOLTAGE VARIABILITY

Architecture 16 nm 45 nm
Knowles 11.3187 | 6.4507
Kogge-Stone 11.0296 | 6.4913
Sklansky 12.1219 | 6.4976
Brent-Kung 10.2750 | 5.5160
Han-Carlson 9.9175 | 6.0042
Ladner-Fischer 9.9998 | 5.7173
New 11.1043 | 6.0783
Borrow-Save 11.6787 | 7.8892

TABLE 5. KULLBACK-LEIBLER DIVERGENCE FOR PROPOSED
GAUSSIAN AND FITTED GAUSSIAN/STABLE PDFs

Architecture Proposed-Fitted Gaussian | Proposed-Fitted Stable
16 nm 45 nm 16 nm 45 nm
Knowles 0.0011 0.0013 0.0034 0.0013
Kogge-Stone 0.0537 0.1570 0.0651 0.1611
Sklansky 0.0359 0.0560 0.0374 0.0574
Brent-Kung 0.0004 0.0071 0.0004 0.0108
Han-Carlson 0.0616 0.0010 0.0655 0.0020
Ladner-Fischer || 0.0324 0.0131 0.0325 0.0135
New 0.0162 0.0030 0.0182 0.0030




TABLE 6. DELAY YIELD ESTIMATION DETERMINED BY p + 30

. 16 nm 45 nm
Architecture
M.C. SPICE (ns) | Proposed Model (ns) | Error (%) | M.C. SPICE (ns) | Proposed Model (ns) | Error (%)
Knowles 0.2568 0.2570 —0.0941 0.4478 0.4474 0.089 08
Kogge-Stone 0.2076 0.2089 —0.6329 0.3566 0.3492 2.086 08
Sklansky 0.2770 0.2733 1.3246 0.4792 0.4794 —0.04377
Brent-Kung 0.3329 0.3324 0.1496 0.5768 0.5778 —0.17546
Han-Carlson 0.2448 0.2443 0.1852 0.4202 0.4210 —0.184 89
Ladner-Fischer 0.2948 0.2950 —0.0667 0.5094 0.5104 —0.201 80
New 0.2954 0.2921 1.1324 0.5105 0.5096 0.176 98
TABLE 7. MEAN COMPUTATIONAL TIME OF M.C. SIMULATIONS FOR 1010

THE CONVENTIONAL AND PROPOSED METHODS

Method

Conventional

Proposed

Run Time

49 h

45h

T I I T
mmm Fitted Gaussian
1 SPICE M.C.

w

| | ===s Proposed PDF |

Moreover, even if individual cell delays are described by
delay distributions other than a Gaussian, the path delays are
assumed to follow a Gaussian distribution for sufficiently
long paths. The proposed model is a path-based model as it
relies on the NMD critical path of each adder architecture
and on the extraction of statistical delay moments from the
simulations of only one path. As a first step, Monte-Carlo
Simulations under V4, variations are performed only for the
NMD critical path for each adder. A Gaussian distribution
is used to approximate the maximum delay PDF, using the
mean delay and standard deviation obtained via the Monte-
Carlo Simulations of NMD critical path. The mean delay of
NMD critical path under the assumed variation mechanism
is expected to equal the nominal delay of the respective path,
hence, it can be approximated as

L

tNMD = tpG + D teroup p6,i (B, WT) + txor,
=1

ey

where {nvp is the delay of the NMD critical path, tpg is the
delay of first-stage PG cells, tgroup PG, is the delay of group
PG cells of i-th logic level, and txor is the delay of XOR
gate used to compute sum. Furthermore, propagation delays
of a PG network is a function dependent on the number of
logic levels of the PG network, L, Fanout, F', and Wiring
Tracks, WT [25]. Similarly, standard deviation of the NMD
critical path delay is estimated as

L

_ 2 2
ONMD =4 | Opg T E O group PG,i(F, WT)2 + 0%or>
=1

)

assuming negligible correlation between variations mani-
fested in each cell thus permitting the expression of path de-
lay variance as the sum of variances of cells along the NMD
critical path. Cell nominal delays and standard deviations
can be characterized once per technology node and variation
mechanism, and, thus, used for the delay estimation of
more elaborate paths. The proposed modeling methodology
assumes that the maximum delay PDF can be approximated
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Figure 6. Monte-Carlo histograms, Fitted Gaussian and Proposed Probabil-
ity Density Functions for (a) Brent-Kung and (b) Kogge-Stone at 45 nm.

as N (unmp, onmp ), where N (p, o) denotes a normal distri-
bution with mean value i and standard deviation o.

3. Evaluation of Proposed Delay Model

3.1. Experimental Framework

As variations are manifested in a no fully correlated
way for the case of intra-die variations, every path has a
probability of becoming the maximum-delay critical path.
Thus, in a circuit subjected to delay variations, an input
pattern which sensitizes the NMD critical path, does not



necessarily sensitize the maximum delay of the particular
circuit instance. For this reason a pre-processing step is
required in order to identify input patterns that sensitize a set
of paths that are likely to become critical. Resembling most
Monte-Carlo methods [1], identification of input patterns is
performed under nominal conditions. Our analysis involves
such input patterns, able to sensitize paths whose nominal
delay is as much as 75% of that of an NMD critical path, i.e.,
a path with a propagation delay from the LSB to the MSB is
sensitized. Thus, we assume that the maximum-delay PDF
of the adders under study, can be adequately described by
utilizing the aforementioned sensitization scenario in order
to restrict the computational complexity of Monte-Carlo
Simulations.

3.2. Proposed Path-Based Model and Analysis

In the following analysis, the o + 3o delay is used as
a measure of worst-case delay and, thus, determines the
delay yield for the particular adders. Tables 2 and 3 present
the delay estimators for the examined adder architectures at
45-nm and 16-nm nodes, respectively. At both technology
nodes, the Kogge-Stone architecture demonstrates the best
delay performance in terms of p + 30. On the contrary,
Brent-Kung adder has the worst performance. These delay
figures correspond to about 3.004 GHz and 1.733 GHz dat-
apath frequency for Brent-Kung adder at 16-nm and 45-nm
and nodes, respectively. As for the fastest parallel-prefix
adder, Kogge-Stone presents a 4.817 GHz and a 2.804 GHz
datapath frequency at 16-nm and 45-nm node, respectively,
while the difference between the second-fastest adder (Han-
Carlson) ranges from 37 ps to 63 ps.

Comparing Tables 2 and 3, mean delays indicate a delay
decrease of almost 1.8 for all adder cases when moving from
45-nm to 16-nm technology node. Sklansky adder is found
to exhibit the greatest delay variability introduced by the
variations of threshold voltage, quantified by the o/u ratio,
at both 16-nm and 45-nm technology nodes. On the other
hand, a Han-Carlson adder demonstrates the smallest vari-
ability at 16 nm and Brent-Kung at 45 nm among the studied
parallel-prefix adders. Values of o/u for greater variation
magnitudes at 16 nm reported in Fig. 5 reveal a similar trend.
The variability metric is primarily determined by the values
of mean maximum delay, as inherent averaging mechanisms
are more effective in circuits with longest paths than in those
with shorter ones, and, consequently, variability is smaller
for larger paths.

Delay performances of the particular Parallel-Prefix
Adders are also compared against the ultra-fast architecture
of Borrow-Save Adder build using Mirror Full-Adder cells.
BSA demonstrates attractive characteristics for variation-
tolerant designs as critical path length is independent of
word length and its worst-case delay increases marginally
under delay variations [15]. The performance of Borrow-
Save Adder outperforms the fastest adder (Kogge-Stone) by
33.38% and 50.87% at 16 nm and 45 nm, respectively, in
the presence of an identical variation mechanism.

Table 4 reports the datapath operation frequency reduc-
tion, as determined by the ratio 3¢/ (11 + 30), for each adder
and technology node caused by only V4, variability. Values
of percentage frequency reduction are consistent with the
values of delay variability reported in Tables 2 and 3, and
show that a Sklansky adder undergoes the greatest frequency
degradation among the parallel-prefix adders under study,
while Han-Carlson (16 nm) and Brent-Kung (45 nm) the
smallest, as indicated also by the o/u metric. Borrow-Save
Adder presents the greatest frequency reduction at 45 nm
and the second greatest at 16 nm among all adders, which
can be attributed to its small logic depth that renders the
particular adder sensitive to variations.

The accuracy of the proposed model with respect to
simulation data is quantified in Table 5. Table 5 shows
the Kullback-Leibler Divergence (KLD) between the pro-
posed path-based delay model and a Gaussian Delay Model,
fitted to delays extracted from Monte-Carlo Simulations
considering a number of near maximum-delay critical paths,
as described in Section 3.1. Close-to-zero values of the
aforementioned metric indicate a good fitness accuracy. It
is revealed that the best accuracy is achieved for the Brent-
Kung and Knowles adders for 16-nm and 45-nm nodes,
respectively, as they present the minimum KLD. On the
contrary, the worst fitting appears for the Han-Carlson adder
at 16-nm node.

It is investigated whether a Stable distribution can ap-
proximate more accurately the skewed behavior of max-
imum delay PDF in the general case and the accuracy
of proposed model is also assessed compared to Fitted
Stable distribution using the same metric. The KLD values
reported in Table 5 for the Stable distribution are similar as
those achieved by the Gaussian. Furthermore, certain values
of KLD for Stable and the Proposed distribution show a
marginally better fitting accuracy than that of Gaussian and
the Proposed one, such as in the case of Brent-Kung adder
at 16 nm.

The delay yield has been assessed by the proposed model
and Monte-Carlo Simulations, and the related values are
reported in Table 6 for both technology nodes. Fig. 6 shows
the Proposed PDF for Brent-Kung and Kogge-Stone adders
at 45 nm. As expected, the proposed model demonstrates
better accuracy at the right tail of the PDF compared with
to Monte-Carlo Simulations. Accuracy in the right tail is
particularly important as it refers to the higher values that
may be assumed by the delay under variations that determine
the worst-case performance.

In most cases, yield values of proposed model agree with
that of Monte-Carlo Simulations in the first two digits. Error
values indicate that in most cases the yield is underestimated
by the proposed model and the error is less than 2.1%
indicating sufficient agreement between the proposed model
and experimental SPICE-level evaluation. Thus, delay yield
estimations for Parallel-Prefix Adders can be accurately per-
formed based on NMD critical path with relatively minimum
accuracy loss compared to the case that considers a set of
potentially critical paths.

Regarding the computational overhead of simulations,
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Figure 7. Delay yield error for certain percentages of threshold voltage
variation.

Table 7 presents the mean computational time of Monte-
Carlo Simulations for a set of highly probable critical paths
(Conventional) and that of proposed model for 1000 iter-
ations. A 10.8-times shorter simulation time for the delay
yield estimation of the examined Parallel-Prefix Adders is
achieved. This means that the simulation run time for the
characterization of delay yield for the examined architec-
tures can be significantly reduced based on the analysis
of only NMD critical path, given that the proposed model
introduces an error that is lower than 2%.

To further investigate the accuracy of the proposed
model for increasing values of the examined variation mech-
anism, delay yield estimations are assessed for 16-bit adders
at 16 nm and introduced variations as large as 30% of
nominal delay. Specifically, Fig. 7 demonstrates the delay
yield error between the proposed model and the respective
M.C. simulations considering a number of critical paths. The
absolute error is lower than 6% in all the examined cases,
and it is the greatest at 30% Vj, variations, as the probability
of observing a non-critical path as the maximum-delay crit-
ical increases compared to smaller percentage variations. In
all investigated cases, model still provides acceptable error
for an early-stage delay exploration for a range of variation
magnitudes.

Given the relatively large error introduced for the 30%
variation case, it is investigated whether the error is re-
duced when a few more potentially critical paths, selected
under nominal circumstances, are considered for the model
derivation. Indicatively, Fig. 8 presents the positive skewed
shape that the maximum delay PDF acquires for such a
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Figure 8. Positive-skewed PDF of Kogge-Stone Adder for 30% nominal
value Vi, fluctuations and proposed models.
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Figure 9. Delay yield error when considering more than one critical paths
for the proposed model.

large variation. The analysis further considers the first-two,
three, or five NMD critical paths. It is noted that the mean
delay and standard deviation of the Gaussian distribution
referring to the max of first-two NMD critical paths can be
analytically computed by Clark’s expressions [26], given the
first-two moments of the related paths. In more detail, Fig. 9
presents the errors for the delay yield between the Monte-
Carlo SPICE simulations for a number of critical paths and
the case of two, three and five NMD critical paths. Fig. 9
reveals that taking also into account the effect of a larger



number of critical paths for the model derivation and delay
yield prediction further improves the accuracy of estimation
for certain cases. For the remainder cases where the error is
not reduced, either small paths may determine delay yield
as more sensitive to variations, and more elaborate path
selection techniques should be investigated to improve the
path-based model accuracy, or the additional paths add extra
pessimism (case of New adder). Thus, a tradeoff between
the paths considered (computational complexity) and the
accuracy of delay yield prediction can be exploited based
on the predicted magnitude of introduced variations.

4. Conclusions

In this paper, a path-based model for the PDF of max-
imum delay of certain Parallel-Prefix Adders is investi-
gated. The proposed model uses fitting parameters extracted
from Monte-Carlo Simulations that consider only the NMD
critical path of examined adders under intra-die threshold
voltage variability. The proposed path-based model shows
significant similarity compared to the fitted distributions on
Monte-Carlo Simulations that take into account a number
of critical paths, as quantified using Kullback-Leibler Di-
vergence. Furthermore, the delay yield as estimated by the
proposed approach is compared with that of Monte-Carlo
Simulations and presents an error that is lower than 2% for
the 10% nominal variation case, leading, furthermore, to a
significant run time reduction for M.C. Simulations.
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