
Variable Precision 16-Bit Floating-Point Vector Unit

for Embedded Processors

Alberto Nannarelli

Department of Applied Mathematics and Computer Science

Technical University, Denmark

alna@dtu.dk

Abstract—The increasing demand of computation at the edge
and the tight power budgets push designers to migrate double and
single-precision calculations to formats of reduced precision and

dynamic range for applications that can tolerate some inaccuracy.
In this context, we introduce a variable format for reduced

precision floating-point with storage limited to 16 bits. This
format is suitable for applications in signal processing, machine
learning and other applications in embedded systems. We present
the hardware implementations for multiplication and division
units that can sustain a throughput of one result per clock cycle
designed for vector processing. We also show some examples of
applications that can benefit from the proposed format.

Index Terms—Floating-point, variable precision, customizable
bias.

I. INTRODUCTION

The miniaturization of electronic devices and the flourishing

of the Internet-of-Things (IoT) bring new challenges in com-

putation. On one hand, devices can send data to some server

(the cloud) for the data processing. On the other hand, the

data processing can be done on the device itself so that the

results are available without requiring communication to the

cloud, or only the results are sent to the server by reducing

the communication bandwidth.

In this latter case, sometimes referred as “edge computing”,

it is crucial to optimize the computation resources to trade off

several aspects, such as, performance, computation accuracy,

and energy consumption. The optimization can be done by

offloading the main processor and executing the heavy cal-

culations in special purpose processors or in general purpose

accelerators.

A large number of applications in IoT, signal processing and

Machine Learning (ML) do not require very high numerical

accuracy, and the trend is to migrate from the double or single-

precision formats (binary64 and binary32 in the IEEE 754

Standard [1]), to formats of reduced precision and storage, for

example, the Google’s Brain-FP [2] and the IBM’s DLFloat16

[3] formats used in ML. These floating-point formats require

16 bits of storage, equivalent to the IEEE binary16 format,

with different precisions and dynamic ranges.

However, with a limited storage of 16 bits there is a conflict

between precision and dynamic range. If we increase the

precision (more bits used to store the significand), we have to

decrease the dynamic range (less bits used for the exponent).

In this work, we present a 16-bit floating-point unit, oper-

ating on vectors, in which precision and dynamic range can

be adjusted depending on the application. The first element of

the vector specifies the format in which the numbers in the

vector are stored.

Moreover, for formats of reduced dynamic range, such

as binary16, we can change the exponent bias to skew the

dynamic range from symmetric to 20, as in IEEE 754, to

asymmetric toward either positive or negative exponents.

Among the variable precision 16-bit FP unit, we focus on

division, that for reduced precision can be implemented by

non-iterative algorithms and pipelined to produce a throughput

of one result per clock cycle.

The contributions of this paper are:

• The description of the variable precision 16-bit floating-

point format, and the design of the hardware to handle

it.

• The design of a 16-bit FP non-iterative division unit.

• Some examples of the benefit of the proposed format

when running applications on embedded processors.

II. VARIABLE PRECISION FLOATING-POINT

The floating-point representation of a real number x is

x = (−1)Sx ·Mx · bEx x ∈ R

where Sx is the sign, Mx is the significand or mantissa

(represented by m bits), b is the base (b = 2 in the following),

and Ex is the exponent (represented by e bits). The represen-

tation in the IEEE 745 standard [1] has significand normalized

1.0 ≤ Mx < 2.0 and biased exponent: bias= 2e−1 − 1.

The dynamic range is the ratio between the largest and the

smallest (non-zero and positive) FP number [4]

DRFP = (2m − 1) · 22e−1 ,

and the precision is given by the weight of the bit in the

last position 2−f , where f is the number of fractional bits

f = m− 1.

For example, for binary16 – m = 11, f = 10, e = 5
(Figure 1) – the dynamic range, including subnormals, is

DRb16 = (211 − 1)22
5
−1 ≈ 4.4× 1012

and the precision is 2−10.

In contrast, for 16-bit fixed point x ∈ [−1.0, 1.0) the dy-

namic range is

DRfxp16 = 216 − 1 = 65, 536 ≈ 6.5× 104



Fig. 1. IEEE 754 binary16 (half-precision) format [1].

Fig. 2. IBM’s DLFloat16 format [3].

Fig. 3. TFP16 e = 7, m = 9 format.

Fig. 4. Google’s Brain-FP [2].

and the precision is 2−15.

The starting point of our variable precision 16-bit floating-

point representation is the IEEE binary16 format in Figure 1.

However, our Tunable 16-bit Floating-Point (TFP16) format,

derived from [5], includes other three formats as in Figure 2

through Figure 4.

Since subnormal support is quite expensive, and we address

error tolerant applications, we opted to flush-to-zero TFP16

numbers with exponent less than −(Emax − 1).
TFP16 supports several rounding modes including the IEEE

754 default mode roundTiesToEven: round-to-the-nearest-even

(on a tie). However, in this work, we implement the simpler

round-to-odd (RTO) mode [6].

A. Customizable Bias

Especially for formats with e = 5 and e = 6 the range

of the representable numbers is limited, and overflows, or

underflows, may occur in some applications.

If the distribution of the exponents of FP numbers in a given

application is skewed toward negative or positive exponents,

we can extend the range of representable numbers by changing

the bias. The bias is set to 2e−1 − 1 in the binary16 format.

For example, if in a given application implemented in bi-

nary16 (bias=15), the range of the partial results is [2−2, 217],
numbers with exponents 216 or 217 will result in an overflow.

In this case, the range of biased exponent from 1 to 12

(corresponding to exponent 2−3 are not used. Therefore, we

can extend the range for the specific application by setting the

bias to 12, so that the largest numbers (exponent 217) will have

biased exponent 17 + 12 = 29 < 31 → ±∞, and the smallest

numbers will have biased exponent −2 + 12 = 10 ≫ 0.

B. Format and Bias Specification

To be able to adapt the format to the specific application, we

need a way to specify the format, and the custom bias. Since

we opted for vector FP units, one solution providing little

overhead is to add an element (FP number) to the vector as

TABLE I
ENCODING OF “ELEMENT 0” TO SPECIFY FORMATS AND BIAS.

e m
ENCODING

bias value
s eMAX e bias

5 11
0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1111|2 = 15

1 1 1 1 1 1 1 1 1 0 1 b b b b b b bbbb|2

6 10
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 01 1111|2 = 31

1 1 1 1 1 1 1 1 1 1 0 b b b b b bb bbb0|2

7 9
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 011 1111|2 = 63

1 1 1 1 1 1 1 1 1 1 1 b b b b b bbb bb00|2

8 8
0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0111 1111|2 = 127

1 1 1 1 1 1 1 1 1 0 0 b b b b b bbbb b000|2

“element 0”. In this “element 0”, we store the format (number

of exponent bits e), and the bias. To make sure that the

“element 0” is not confused with a 16-bit FP value, we encode

it as a “not-a-number (NaN)” with bits in the significand field

indicating e and the bias. The encoding of “element 0” is

explained in Table I.

By the encoding in Table I, the value is always recognized

as a NaN, independently of the format. The format, specified

by the two least-significant bits (LSBs) of the exponent size,

is read from the two bits in position 6 and 5 (the LSB is in 0).

If the sign bit (MSB) is 0, the bias is the default one: 2e−1−1,

otherwise the 5 LSBs specify the custom bias. The granularity

of the custom bias is 2e−5. For example, granularity 1 for

e = 5, 2 for e = 6, etc..

For e = 8 the custom bias bits cannot be all zero: −∞.

However, because the exponent range for e = 8 is as large as

binary32, probably it is never necessary to skew the bias for

this format.

If a NaN is detected in the body of the vector, i.e., an

operand, the result of the operation is set to NaN by copying

the input NaN.

The bias can be set differently for each single operation.

However, it is probably more practical to set the same format

and bias for the whole kernel of computation. The choice can

be made based on the profiling of the kernel, for example.

C. TFP16 Packing and Unpacking

The TFP16 units must be able to operate on the four formats

in Figure 1–Figure 4. Therefore, it is necessary to unpack and

pack the different fields of the operands from/to the 16-bit

storage format.

The TFP16 units must accommodate the longest words in

the datapath: 8-bit for exponents and 11-bit for significands.

The exponent (integer) is aligned with LSB to the right,

while the significand (fractional) is aligned with MSB to the

left (integer bit). Figure 5 shows how the 16-bit words are

unpacked and repacked according to e. The alignment is done

by shifts implemented by 4:1 multiplexers. In parallel, with

the unpacking, the exponent bits are OR’ed to detect if the

exponent is zero and set the integer bit of the significand

accordingly.

In the packing, after the operation, the significand is flushed

to zero if an overflow or underflow condition is detected.



5

6

7

8

8
5

6

7

in
t.

 b
.

e =

shift left

e =

shift right

shift right

8
5

7

6
shift left

5
6

7

8

e = e =

Exponent Significand

MSB MSB

Fig. 5. TFP16 unpacking and re-packing in 16-bit storage format. Only LSB
of exponent and MSB of fraction shown.

TABLE II
STANDARD BIAS SELECTED BY TWO BITS OF e.

e bias e bias

5 15 0000 1111 7 63 0011 1111
6 31 0001 1111 8 127 0111 1111

D. TFP16 Bias Handling

The different values of bias can be easily selected by a

simple circuit generating the standard bias (symmetric as in

IEEE 754) for each exponent length, as in Table II.

In addition, when the sign bit of the “element 0” is “1”, the

custom bias is set as specified in Table I.

Overflows are detected when the e-bit exponent is larger

or equal than the maximum exponent for that format. For

example if the exponent of the result is 0110 0000, it is an

overflow for e = 5 and e = 6, but not for e = 7 and

e = 8. Similarly, underflows are flushed to zero when the

e-bit exponent is less or equal than zero.

III. TFP16 MULTIPLICATION

The unit for TFP16 multiplication is sketched in Figure 6.

In the figure, unpacking and packing of TFP16 numbers are

omitted to keep the drawing simple.

For the significand path, we need a 11×11-bit multiplier

producing a 22-bit product P. For m < 11, the LSBs of the

significands are set to zero during the unpacking, resulting in

zeros in the corresponding partial products array.

The 10 LSBs of P are used to compute the sticky bit.

The multiplexer connected to the 12 MSBs of P is used to

normalize the result when P≥ 2.0, i.e., the MSB P(21) is “1”.

We rename P(21) as OVF (overflow) in Figure 6.

Next, we perform rounding-to-odd, as follows:

1) The sticky bit T1 computed by OR’ing the 10 LSBs of

P is OR’ed to bit P(10) if OVF=1.

T2 = T1 + (P(10) · OVF)

Otherwise, P(10) is the bit in the last position of the

11-bit normalized significand;

zE

0 1
mux

Exp. adjust

IN
F

T
Y

Z
E

R
O

8

8

8

<<1

M
X

M
Y

Exp. add

xE yE

Bias

E

88

Bias tbl

2

e

11 x 11 bit

Multiplier

0 1
mux

22

10

P

P(10)

Sticky bit

Round−to−Odd

11 T

11

e

2

11118

8

B

E+1

8e

OVF P(21)=

to re−pack

1

12

P
rnd

compound add

Fig. 6. TFP16 multiplier. Unpacking, re-packing and sign computation not
shown.

2) Depending on e, we OR the bits up to the last position

to form the correct sticky bit:

e = 5 : T = T2

e = 6 : T = P(11) + T2

e = 7 : T = P(12) + P(11) + T2

e = 8 : T = P(13) + P(12) + P(11) + T2

3) The bit in the last position L for the m-bit significand

is OR’ed to T:

Prnd(L) = P(L) + T

and the rounding-to-odd is completed.

For the exponent path, we need to set the bias B to the

selected exponent or to the custom one (Bias tbl in Figure 6).

Then, we need to add the two exponents and subtract the bias

E = Ex + Ey −B .

We perform the three operand addition by a 3:2 carry-save

adder, with a complemented input to handle subtraction, fol-

lowed by a compound adder producing E and E+1. We select

one of the two values according to OVF. If P≥ 2.0, the product

is shifted one position to the right and the exponent E + 1 is

selected. The selected exponent is checked for overflow or

underflow and the two condition are used in the re-packing

block.

The sign of the product in obtained by XOR’ing the signs

of the two operands.

IV. TFP16 DIVISION

Division can be implemented by two classes of iterative

algorithms: digit-recurrence and iterative approximation of the

reciprocal followed by multiplication [4].

The digit-recurrence approach requires simpler hardware,

but the convergence is linear: a fixed number of bits of

the quotient are produced per iteration. The number of bits

computed per iteration depends on the radix [4].



1.

7 6

F 1 F 2

Adder

11

1111

R

Fig. 7. Implementation of bipartite table for R = 1/d.

In contrast, multiplicative methods, such as reciprocal

approximation by the Newton-Raphson method, converge

quadratically, but require multipliers.

For binary64, double-precision, digit-recurrence algorithms

give the best trade-off between latency and power dissipation.

Recent work in digit-recurrence dividers shows several imple-

mentations with the radix ranging from 4 (2 bits for iteration)

to 64 (6 bits per iteration) [7], [8].

For TFP16 precisions, m ∈ [8, 11] bits, digit-recurrence

algorithms require more than two iterations. For example,

the radix-8 divider of [8] requires ⌈11/3⌉ = 4 iterations for

m = 11 significands, while the radix-64 divider of [7] requires

⌈11/6⌉ = 2 iterations. In both examples, extra cycles are

necessary for initialization and rounding.

However, for a vector unit, it is desirable to have one result

produced per clock cycle in a fully pipelined unit. By giving

up accuracy, we can implement a divider for TFP16 precision,

by approximating a 11-bit reciprocal in one cycle, followed by

a multiplication in a second cycle

q = x/d
cycle 1 : R = 1/d
cycle 2 : q = x · R

Since we use rounding-to-odd, we do not need to compute the

remainder.

A. Reciprocal Approximation

The simplest approximation of a function of limited preci-

sion is by using a look-up table. In the case of the reciprocal

R = 1/d, we tried to implement the approximation for m = 8
significands with a single table by synthesis in a standard cell

library. The table, synthesized as multi-level logic, resulted

in an area of 215 NAND-2 equivalent gates. However, for

m = 11 (largest precision for TFP16) the area resulted to be

600 NAND-2.

An alternative to the single table is the bipartite table. By

resorting to Taylor’s series the approximation of the function

TABLE III
AVERAGE AND MAXIMUM ERROR FOR R = 1/d APPROXIMATION WITH

BIPARTITE TABLE.

ǫave ǫmax

m e value weight value weight

11 5 0.000413 -12 0.001943 -10
10 6 0.000496 -11 0.002049 -9
9 7 0.000760 -11 0.002496 -9
8 8 0.001391 -10 0.004259 -8

zE

0 1
mux

Exp. adjust

IN
F

T
Y

Z
E

R
O8

xE

Bias

E

88 Bias tbl

2

e M
X

8

8

B

E+1

8e

OVF

to re−pack

22

11

Exp. add
compound add

11

11

0 1
mux

Reciprocal

Table 11

Ed M d

Swap OP OP

Normalize & Round

11 x 11 bit

Multiplier

rndQ

R 11

Fig. 8. TFP16 divider/multiplier, depending on OP.

is obtained by the sum of two parts implemented by tables

of reduced size [4]. In our case, we approximated the recip-

rocal by bipartite tables of 27 and 26 entries. The reciprocal

approximation, depicted in Figure 7 resulted in an area of 470

NAND-2 gates, including the adder. Table F2 output is 4 bits

wide and it is sign-extended to 11 bits.

We report in Table III the errors obtained from exhaustive

simulations for approximating 1/d for the four TFP16 formats.

B. Divider Implementation

By combining the reciprocal table and the TFP16 multiplier

of Sec. III we obtain the TFP16 division unit. Since multi-

plication is far more frequent than division, we decided to

implement a unit to compute both division and multiplication.

The architecture of the combined division/multiplication

unit is sketched in Figure 8. In the figure, we highlighted the

extra blocks necessary to implement division with respect to

the TFP16 multiplier of Figure 6.

In the significand path (Figure 8 at right), we need to

select R for division (OP=0) or Md for multiplication. In the

exponent path (Figure 8 at left), for division the exponents are

subtracted, and the bias is added:

E = Ex − Ed +B OP=0,



while for multiplication the exponents are added and the bias

subtracted:

E = Ex + Ed −B OP=1.

Therefore, we need to swap Ed and B depending on the

operation.

The remaining parts of Figure 8, normalization and round-

ing, and exponent update and adjustment do not change. The

combined unit is completed by TFP16 unpacking and packing

hardware and a XOR gate to compute the sign.

C. Division and Square Root

The architecture in Figure 8 could easily be adapted to

compute square root by adding a table to approximate 1/
√
x.

The square root is then computed by

s = x · 1√
x
=

√
x .

Modifications are required in the exponent handling. We leave

this improvement for future work.

V. HARDWARE IMPLEMENTATION

The TFP16 combined divider and multiplier of Figure 8,

completed with unpacking and packing units is implemented

in the STM 45 nm low-power library of standard cells.

In Figure 9, we show the critical path of the unit. The critical

path is through the following blocks:

Unpack → R Table → Mux → Mult. →
→ Mux (norm.) → Round → Repack ≃ 2 ns

The target is to have the TFP16 units clocked at 1 GHz,

corresponding to a clock period TC = 1.0 ns, or to about

15 FO4 delay in the library. To meet the timing constraint,

the unit is pipelined in two stages:

1) unpacking, reciprocal table and exponent computation

(E and E+1);

2) multiplication, normalization and rounding, exponent

update, and packing.

The position of the pipeline registers is marked by horizontal

blue lines in Figure 9.

The synthesized circuit meets the timing constraints of

TC = 1.0 ns with an area of about 4,000 NAND-2 equiv.

gates. The overhead to support TFP16 is about 330 NAND-2

(8% of total area): unpacking 210, Bias tbl 40, and repacking

80 NAND-2.

The power dissipation for the different TFP16 formats is

reported in Table IV. The power estimation is based on test

vectors with the significand of the divisor Md covering all the

combinations for normalized operands: i.e., 210 combinations

for m = 11 (binary16). Random values are used for the

significand of the dividend Mx and for both the exponents.

In Table IV, along with average power dissipation measured

at 1 GHz, we report also the energy necessary to complete a

division

Ediv = Pave × n. cycles × TC [J ],

zE

Exp. adjust

IN
F

T
Y

Z
E

R
O8

E

8

E+1

8
e

22

11

Exp. add
compound add

11

0 1
mux

11

xE M
X

M d

8

Ed

0 1
mux OVF

OP
OP

Normalize & Round

11 x 11 bit

Multiplier

R 11

Operands      Unpacking

Result    Packing

Bias tbl

28

8

e

B

B
cust

XOR

Swap SdSx

Sz Mz

Reciprocal

Table

Fig. 9. Critical path for TFP16 divider/multiplier. The position of the pipeline
registers is marked by the horizontal blue segments.

TABLE IV
AVERAGE POWER DISSIPATION AND ENERGY PER OPERATION FOR TFP16

DIV/MULT AND RADIX-8 DIVIDER.

OP m Pave [mW] cycles Ediv [pJ] ratio

div 11 3.16 2 6.33 1.00
div 10 3.12 2 6.23 0.99
div 9 3.04 2 6.08 0.96
div 8 2.91 2 5.81 0.92

mul 11 2.68 2 5.35 0.85

radix-8 m Pave [mW] cycles Ediv [pJ] ratio

binary16 11 8.50 7 59.50 9.41
BFP-16 8 8.47 6 50.81 8.03
binary64 53 9.09 24 218.26 34.50

Pave measured at 1 GHz.

and the Ediv ratios with respect to m = 11.

For division in the TFP16 unit (OP=div), the power dissi-

pation (and energy) is reduced very little when the precision

scales. We also report the power dissipation when the TFP16

combined unit is used for multiplication (OP=div) for signif-

icant precision m = 11 only. In this case, Pave and Ediv are

reduced by about 15% because in the reciprocal table we set

the input to 1.0 when OP=mul.

In the bottom part of Table IV, we report the power

and energy consumed by division implemented in a digit-

recurrence unit. We opted out the low latency unit of [7]

because the high level of speculation results in a large unit,

and the reduced number of iterations for TFP16 do not offset



the larger power dissipation per cycle. We chose to compare

the TFP16 divider to the radix-8 unit of [8] modified to

handle formats smaller than binary64. This decision can be

justified when the reduced precision processor/accelerator is

not equipped with a division unit, and the regular FP-unit is

used instead.

The radix-8 unit requires one initialization cycle and two

termination cycles. Therefore, its latency in clock cycles is:

n. cycles = 1 +
⌈m

3

⌉

+ 2 .

By synthesizing the radix-8 divider in the same low-power

library, we meet the TC = 1.0 ns timing constraint with an

area of about 8700 NAND-2 – it must handle binary64. We

run the power estimation on the radix-8 divider for m = 11,

m = 8 and binary64. The results in Table IV (bottom part)

show that the TFP16 divider is much more power efficient for

low precision divisions. Furthermore, the TFP16 divider can

sustain a throughput of one result per clock cycle.

VI. EXAMPLES OF APPLICATIONS

In this section, we provide some examples of applications

that can benefit from the TFP16 format. The examples are run

on a bit accurate simulator, implementing all the features of

the TFP16 format of Sec. II.

A. Chi Square

The Large Hadron Collider, at CERN (Switzerland), is built

to accelerate sub-atomic particles and allow state-of-the-art

research in particle physics. One of the major experiments

is ATLAS [9], a large detector to measure the trajectories of

particles, called “tracks”, formed after the collision of two

particles.

Each collision generates tracks of interest, but also noise

(i.e., particles not to be tracked). The detector collects a huge

amount of data, about 40 TB/s, and the noise needs to be

filtered out.

One of the filtering algorithms is the so called “Chi-square”

algorithm, a measure of the distance between the observed

track and the expected track. If the observed track is close

enough to the expected, the corresponding data is stored,

otherwise the data is discarded.

The χ2 (Chi-square) is calculated as:

χ2 =

6
∑

i=1





11
∑

j=1

Sijxj + hi





2

(1)

where Sij and hi are pre-calculated constants for the detector

sector (several of them) and xj are the local hit coordinates

[10].

The χ2 calculations are currently done in binary32 (FPGA),

but it is desirable to move the computation to a reduced format

to save hardware.

By looking at the distribution of the exponents (biased) for

the binary32 representation of Sij and hi in Figure 10, we

notice that the values are between 97 (2−30 unbiased) and

 90  100  110  120  130  140 Biased exp.

Fig. 10. Distribution of biased exponents for Sij and hi of 2,000 detector
sectors. E=127 corresponds to 20.

138 (211 unbiased). With this exponent range (difference is

39), we would be able to run (1) in TFP16 m = 10 e = 6.

However, since the minimum exponent allowed for e = 6
is 2−32, about one third of the performed operations result

in underflow with a rather large error. By setting the bias

to 42 (the minimum unbiased exponent detected is 2−42),

we eliminate the underflows and reduce the approximation

error with respect to the binary32 computation. For exponents

e = 7 and e = 8, we do not get overflows, but the precision

is reduced with respect to the case for e = 6 and B = 42.

B. Gaussian Elimination

Gaussian elimination is an algorithm used in several linear

algebra kernels. It consists of two steps:

1) A first pass on the rows of matrix A to transform it in

an upper triangular matrix;

2) A substitution step in which the roots x[i] are com-

puted from the last row and backwards.

The pseudo-code to implement the Gaussian elimination is

illustrated in Algorithm 1.

Both steps require division that for single or double-

precision can be a bottleneck because of the several itera-

tions/cycles needed for it.

In TFP16, division has a latency of two clock cycles and

a throughput of one result per clock cycle similar to addition

and multiplication.

We run simulations with fractional inputs in (−1.0, 1.0)
and dynamic range of 24 bits. As an example, we use a order

10 system (10 unknowns) and compared the error in the roots.

Table V shows the average error obtained for binary32 and the

four TFP16 formats. Rounding-to-odd is applied in all cases.

The simulations show that for reduced precision of the

operands, the error is still acceptable for error tolerant applica-

tions. Moreover, all TFP16 operations can sustain a throughput

of one result per clock cycle.



Algorithm 1 Gauss elimination.

/* rows transformation to upper triangular matrix */
for i=1 to n do

for j=i+1 to n+1 do
t=a[j][i]/a[i][i];

for k=i to n+1 do
a[j][k]=a[j][k]-t*a[i][k];

end for
end for

end for

/* backward substitutions */
x[n]=a[n][n+1]/a[n][n];

for i=n-1 down to 1 do
s=0;

for k=n down to i+1 do
s=s+a[i][k]*x[k];

end for
x[i]=(a[i][n+1]-s)/a[i][i];

end for

TABLE V
AVERAGE AND MAXIMUM ERRORS FOR GAUSSIAN ELIMINATION (ORDER

10) FOR binary32 AND TFP16 FORMATS.

ǫave ǫmax

m e value weight value weight

binary32 0.000001 -21 0.000002 -20
11 5 0.005531 -8 0.007938 -7
10 6 0.008565 -7 0.018774 -6
9 7 0.017579 -6 0.062387 -5
8 8 0.051686 -5 0.093637 -4

VII. CONCLUSIONS AND FUTURE WORK

The increasing demand of computation at the edge and the

reduced power budgets push designers to migrate calculation

from the traditional double and single-precision to formats of

reduced precision and dynamic range for applications that can

tolerate some inaccuracy.

Although the hardware for floating-point is more compli-

cated than the one for fixed-point arithmetic, floating-point

makes the development of applications easier because opera-

tions such as scaling and operand alignment, are taken care

by the hardware.

In this context, we introduced TFP16, a variable format

for reduced precision floating-point with storage limited to

16 bits. We illustrated the trade-offs between dynamic range

and precision for the four TFP16 formats, and showed that the

dynamic range of the FP representation can be extended by

skewing the bias.

We presented TFP16 units for multiplication and division

that can sustain a throughput of one result per clock cycle and

have a latency of two clock cycles.

A TFP16 adder can easily be derived by the variable

precision unit of [11] by scaling the significand datapath from

m = 24 to m = 11 and by including the blocks to handle

packing/unpacking and the bias. The adder design will be

addressed in future work, as the inclusion of a table to compute

square-root in the TFP16 division unit.

The TFP16 units are designed to handle vector processing,

and the architecture of the whole vector unit will also be part

of future work.

REFERENCES

[1] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019

(Revision of IEEE 754-2008), pp. 1–84, Jul. 2019.

[2] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in ACM/IEEE 44th Annual International Symposium

on Computer Architecture (ISCA), 2017, pp. 1–12.

[3] A. Agrawal, S. M. Mueller, B. M. Fleischer, J. Choi, N. Wang,
X. Sun, and K. Gopalakrishnan, “DLFloat: A 16-b Floating Point Format
Designed for Deep Learning Training and Inference,” in 26th IEEE
Symposium on Computer Arithmetic, Jun. 2019, pp. 92–95.

[4] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[5] A. Nannarelli, “Tunable Floating-Point for Energy Efficient Accelera-
tors,” in 25th IEEE Symposium on Computer Arithmetic, Jun. 2018, pp.
29–36.

[6] S. Boldo and G. Melquiond, “Emulation of FMA and Correctly Rounded
Sums: Proved Algorithms Using Rounding to Odd,” IEEE Transactions

on Computers, vol. 57, no. 4, pp. 462–471, Apr. 2008.

[7] J. D. Bruguera, “Low Latency Floating-Point Division and Square Root
Unit,” IEEE Transactions on Computers, vol. 69, no. 2, pp. 274–287,
Feb. 2020.

[8] A. Nannarelli, “Performance/Power Space Exploration for Binary64
Division Units,” IEEE Transactions on Computers, vol. 65, no. 5, pp.
1671–1677, May 2016.

[9] ATLAS Experiment, CERN. ”Atlas Web Page”. [Online]. Available:
https://atlas.cern

[10] A. Marantis, “The ATLAS Fast TracKer - Architecture, Status and
High-Level Data Quality Monitoring Framework,” in CERN, ATL-DAQ-

PROC, no. 41, 2018, pp. 1–8.

[11] A. Nannarelli, “Tunable Floating-Point Adder,” IEEE Transactions on

Computers, vol. 68, no. 10, pp. 1553–1560, Oct. 2019.


