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Abstract—Recently proposed real number systems like POSITS
and ELIAS codes make use of tapered accuracy resulting from
variable-length coding of exponents and significands. Several
quite different interpretations of these number systems have been
provided, though most often these rely on some combination of
fixed- and variable-length codes for exponent and significand.
We provide a new perspective on these number systems that
unifies known representations while suggesting new ones. Our
framework is based on multibit radix representations that encode
the exponent in unary, the leading nonzero digit in a variable-
length code, and the remaining digits in fixed-length binary code.
We show how POSITS, the various ELIAS codes, and IEEE 754 like
representations can be expressed in this framework. Moreover,
we show that POSITS and the ELIAS γ and δ codes represent the
leading digit using the canonical Huffman code for a probability
distribution given by Benford’s law, which governs the probability
of leading digits. We further show that POSITS correspond to the
use of a fixed radix while ELIAS δ and ω codes are based on
simple sequences of increasing radix. Our approach provides for
an intuitive and uniform framework for representing numbers
that reveals a visual mapping between codewords and the binary
representation of real numbers obscured by prior frameworks.
This new interpretation suggests a generalization of POSITS and
other number systems and provides simple rules for designing
information-theoretically optimal codes.

Index Terms—real number systems, floating point, posits, Elias
codes, tapered accuracy, Benford’s law, Huffman code

I. INTRODUCTION

A recent rebirth of research into systems for representing
real numbers has spawned several proposals based on the no-
tion of tapered accuracy [13], where the number of exponent
and significand bits is not fixed. Examples include Gustafson
and Yonemoto’s POSITS [4], Hamada’s URRs [6], Yokoo’s
number systems [17], and Lindstrom et al.’s [12] real-number
extensions of the ELIAS codes [3], which were originally
designed for positive integers. All of these number systems es-
sentially encode the same information as conventional IEEE 754
floating point: a sign, a binary exponent, and a significand.

As observed in the recent work by Lindstrom and others,
these representations can be thought of as instances of larger
classes of number systems that share many properties and that
can be described as simple variants of a family of coding
schemes. Lindstrom et al. [12] proposed one such framework
in which the number systems differ in how the exponent is
encoded using one of several possible variable-length codes,
most of which are well-known in the information theory
community. In another view [11], numbers are encoded one

bit at a time as outcomes of comparisons with sequences
of numbers that partition finite intervals (binary search) or
unbounded intervals (unbounded search). These number se-
quences often have very simple rules, allowing whole number
systems to be defined using only two simple expressions. Yet
a third interpretation of POSITS is provided by Gustafson and
Yonemoto [4], who invoke the idea of “regime” bits in addition
to exponent bits. Frameworks like these are indispensable for
rapid prototyping of new representations and for implementing
and comparing emerging number systems in target applications
like scientific computing and machine learning.

Although prior frameworks and interpretations serve to
categorize and contrast number systems, they have some draw-
backs. First, it is not trivial to develop a new variable-length
prefix code of exponents that has the properties desired for
a particular application, and implementing such codes can be
tedious and error prone. Second, the partition-based scheme,
though simple, is not performant as it requires high-precision
arithmetic operations for each bit encoded or decoded. Finally,
it is not clear how to generalize the idea of regime and
exponent bits to number systems other than POSITS.

In this paper, we propose yet another interpretation of
POSITS based on the notion of a fixed base (or radix) other
than two. We show how to generalize this representation to
those in which the radix is not fixed but varies from one digit
to the next, as is needed to describe URR and the ELIAS δ
and ω codes. Under this interpretation, the POSIT regime bits
serve the purpose of a high-radix signed exponent encoded in
unary, with a variable-length encoding of the leading (nonzero)
digit. We show how this leading-digit encoding is in a sense
optimal for the codes considered and is given by the canonical
Huffman code [8] associated with the distribution given by
Benford’s law of leading digits [1]. This variable-length encod-
ing prevents the wobbling accuracy associated with other high-
radix representations [7]. Under this new framework, a number
system is parameterized simply in terms of the radix sequence,
which in all cases considered here is given by a simple
expression. Our framework further suggests generalizations of
POSITS to bases not previously considered as well as novel
number representations with attractive properties. Finally, we
believe this new interpretation is more intuitive than prior
frameworks, with the additional benefits of a simple uniform
implementation and improved performance over bisection-
based bitwise operations.
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Fig. 1. 32-bit representations of π in several number systems. Codeword bits are split into sign , level , leading digit , and trailing digits . The binary
representation in gray is partitioned into digits of possibly varying radix. Each level bit indicates whether the corresponding digit is significant; the implicit
FP level terminator is shown circled. Arrows indicate the order that bits are sequenced into a codeword and illustrate the sequential scan for the leading digit.

A. Preliminaries

We consider the task of encoding real numbers x ∈ R. We
may represent x 6= 0 as 〈s, e,m〉 such that x = (−1)sβem,
where s encodes the sign, e is the exponent, m ∈ [1, β) is the
significand, and β ≥ 2 is the radix (or base). y = E(x) and
x = D(y) encode reals and decode codewords (bit strings),
respectively. We will sometimes perform arithmetic on code-
words y, which is to be understood as integer arithmetic on
the two’s complement interpretation of y.

As in [4], [11], [12], the number systems expressible in our
framework share these properties:
• Zero: E(0) = 000 . . . 0.
• One: E(1) = 010 . . . 0.
• Not a real: E(⊥) = 100 . . . 0.
• Two’s complement: E(−x) = −E(x).
• Reciprocal symmetry: E(2i)−E(2j) = E(2−j)−E(2−i).
• Lexicographic ordering: x < x′ ⇐⇒ E(x) < E(x′).
• Nesting: D(y 0) = D(y).
• Rounding: Round to nearest, ties to even.

Reciprocal symmetry implies that for all i ∈ Z there are
as many representable numbers in [1, 2i) as there are in
[2−i, 1) and that E(2−i) = E(⊥)−E(2i). Reciprocal closure is
otherwise not guaranteed for non-powers-of-two. The nesting
property implies that the value associated with a codeword
does not change when appending zero-bits.

Because negative numbers are trivially handled via two’s
complement encoding and x = 0 is encoded as all-zero bits,
we will for simplicity assume that 0 < x <∞. We will often
start from the binary representation of x,

x =

∞∑
i=−∞

bi2
i, (1)

where bi denotes the ith bit. Bits i ≥ 0 appear to the left of
the radix point; bits i < 0 appear to the right. We usually omit
leading-zero bits in the binary representation. More generally,
for β ≥ 2, we use di to denote the ith digit. d` = bmc denotes
the leading nonzero digit such that m = d` + f`, where f` ∈
[0, 1) is the fraction given by the trailing digits.

As we shall see later, the radix β needs not be fixed but may
vary from one digit to the next. When β is a power of two,
we use w = log2 β to denote the number of bits spanned by
the radix. For instance, in hexadecimal number systems such
as the IBM 360 floating-point system [16], β = 16 and w = 4.

We will make use of signed unary encoding of integers.
A nonnegative integer i ≥ 0 has a signed unary encoding of
1i+10, i.e., i + 1 one-bits followed by a zero-bit. A negative
integer i < 0 is encoded as 0−i1. The leading bit thus indicates
the sign of i, and the rightmost bit of opposite value terminates
the codeword.

II. PRIOR WORK: POSITS

POSITS are by far the most common tapered representation
today. The POSIT format defines a family of representations
that are parameterized by p, called the “exponent size” in [4].
In this section, we review known interpretations of POSITS to
provide some context for our proposed framework.

A. The Regime Interpretation

The best known POSIT interpretation is the authors’
own [4]: numbers are given by tuples 〈s, `, t, f〉 where `
encodes the “regime”—the most significant bits of the base-2
exponent e—and t encodes the p least significant bits of e:

e = 2p`+ t. (2)

Then x = (−1)s 2e (1 + f). In [4], t is called the exponent,
which is a bit of a misnomer since it represents only the few
trailing bits of e. The encoding of e is done in two parts:
a variable-length signed unary code for ` followed by p bits
for t. The fraction, f, is then appended. The leading one-bit
be = 1 is implied for all x 6= 0 and is not stored.

B. The Golomb-Rice Interpretation

Lindstrom et al. [12] realized that POSITS differ from
IEEE 754 floating point primarily by using variable-length
encoding of the base-2 exponent, e. Whereas IEEE allocates
a fixed number of bits for the exponent, which is encoded
in binary, POSITS encode the exponent using a generalization
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Fig. 2. 32-bit representations of 10−6 in several number systems. See Figure 1 for details.

TABLE I
POSIT(2) (β = 16) CODES FOR A SELECTION OF INTEGERS SEPARATED

INTO SIGN , LEVEL , LEADING DIGIT , AND TRAILING DIGITS .

x E(x)
−110 = −116 1 10 00
010 = 016 0 000. . .
110 = 116 0 10 00
210 = 216 0 10 01 0
310 = 316 0 10 01 1
510 = 516 0 10 10 10
810 = 816 0 10 11 000

1310 = d16 0 10 11 101
2110 = 1516 0 110 00 0101
3410 = 2216 0 110 01 0 0010

25610 = 10016 0 1110 00 0000 0000
409510 = fff16 0 1110 11 111 1111 1111
466010 = 123416 0 11110 00 0010 0011 0100

of Golomb-Rice codes [14]. Golomb-Rice codes for nonneg-
ative integers, z, are parameterized by a power-of-two integer
w = 2p. Then z = wq + r with 0 ≤ r ≤ w − 1. The quotient
q ≥ 0 is encoded in unary as 1q0, while the residual r is
encoded in binary as p bits. To generalize Golomb-Rice to
negative integers, Lindstrom et al. used signed unary encoding
of q, so that the code for q < 0 begins with one or more
zeros terminated by a one-bit. They further show how exponent
codes other than Golomb-Rice may be used to generalize the
ELIAS codes to numbers other than positive integers.

C. The Exponential Search Interpretation

Bentley and Yao [2] showed how the ELIAS codes arise
from binary comparisons in unbounded search. In unbounded
search for a positive integer x, one scans a monotonic
sequence (ai) until ai ≤ x < ai+1. Each comparison
between x and ai corresponds to a codeword bit. Once x
has thus been bracketed in a bounded interval, the interval is
then successively narrowed, e.g., using binary search, which
generates further bits. As an example, POSIT(p) corresponds
to the sequence ai = 22

p×i = 22
p

ai−1. The representable
set [1,∞) is then extended to all reals via two’s complement
negation and reciprocation: a−i = a−1i . As shown in [11],
number systems can be defined via two simple rules: one for
generating the sequence ai → ai+1, and one for bisecting
finite intervals [a, b)→ c, with a < c < b.

III. FIXED-RADIX REPRESENTATIONS: POSITS

We now arrive at our new fixed-radix interpretation of
POSIT(p). Instead of β = 2, we let the radix (called “useed”
in [4]) be β = 2w with w = 2p. Starting from the binary
exponent e = w`+ t (see Eq. (2)) and the binary significand
m ∈ [1, 2), we rewrite x > 0 from base 2 to base β as

x = 2em

= 2w`+t
(
1 +

∞∑
i=1

m−i2
−i
)

= (2w)
`

(
2t +

t∑
i=1

m−i2
t−i

︸ ︷︷ ︸
d`

+

∞∑
i=t+1

m−i2
t−i

︸ ︷︷ ︸
f`

)

= β`(d` + f`).

(3)

Thus, ` is the base-β exponent, d` ∈ {1, . . . , β − 1} is the
leading nonzero digit, and f` ∈ [0, 1) represents a trailing
fraction. Our POSIT encoding of x uses signed unary for the
exponent, `, and a variable-length code for d` = 2t + r. This
code represents t in p bits followed by t additional bits for r,
with 0 ≤ t ≤ w−1. All remaining digits, di ∈ {0, . . . , β−1},
of f` are simply appended w bits at a time. After incorporating
the sign bit s of x, the codeword is finally truncated or zero
padded to n bits of precision (e.g., n = 32).

We note that, for x ≥ 1, the unary code 1`+10 indicates
that there are ` + 1 significant digits to the left of the radix
point, and each codeword one-bit (from left to right) indicates
significance of a corresponding base-β digit (from right to
left). When x < 1, the unary code 0−`1 indicates there are
−` leading zeros (including the zero just left of the radix
point) before the first nonzero digit. Again, the terminating
one-bit marks a significant digit. Hence, the leftmost bit of the
codeword for ` tells us the direction in which to sequentially
scan for d` starting from d0: 1 for left and 0 for right.

Figures 1 and 2 and Table I illustrate the POSIT(p) encoding
of reals for p = 0 (where they coincide with the ELIAS γ
code) and for p = 2. Here the red colored bits encode the
base β = 22

p

exponent `, which we more generally will refer
to as the level (see below). Each red one-bit indicates that



TABLE II
THE LEADING-DIGIT DISTRIBUTION PREDICTED BY BENFORD’S LAW AND THE EMPIRICAL DISTRIBUTIONS OBSERVED IN TWO NUMERICAL

APPLICATIONS FOR BASE β = 16. H DENOTES SHANNON ENTROPY IN BITS/SYMBOL; L∗ IS THE EXPECTED (OPTIMAL) LENGTH OF THE HUFFMAN
CODE FOR THE EMPIRICAL DISTRIBUTION; L IS THE EXPECTED LENGTH OF THE BENFORD CODE; R2 IS THE PEARSON CORRELATION WITH THE

BENFORD PROBABILITY DISTRIBUTION. THE BENFORD CODE IS OPTIMAL FOR MATINV AND CLOSE TO OPTIMAL FOR EULER2D.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 H L∗ L R2

Benford .250 .146 .104 .080 .066 .056 .048 .042 .038 .034 .031 .029 .027 .025 .023 3.481 3.500
MatInv .231 .164 .098 .081 .061 .053 .064 .042 .038 .035 .032 .028 .026 .024 .024 3.499 3.524 3.524 .991
Euler2D .352 .166 .113 .062 .041 .054 .085 .023 .018 .017 .015 .014 .014 .013 .014 3.040 3.106 3.145 .981

the corresponding digit in gray is significant (i.e., is not a
leading zero). The blue colored bits encode the leading digit
d` = 2t+r as a pair 〈t, r〉 in p+t bits. For p = 0, d` = 1 when
x 6= 0, and therefore the leading-digit code has zero length.
The FP representation illustrates both POSIT(7) and a slight
variation on IEEE 754 single precision. We here have as radix
the rather large number β = 2128 (i.e., 128-bit digits). In this
base, FP allows only two digits: one to the left and one to the
right of the radix point. This limitation on number of digits
makes FP not a universal code, as numbers larger than 2128

cannot be represented. Whereas POSIT(7) allows for more
digits and terminates the signed unary exponent code with
a bit (shown circled), this terminal bit is implicit in FP. What
we usually think of as the binary exponent in IEEE floating
point represents the exponent t in the leading-digit code in FP.

A. POSITS vs. Hexadecimal Floating Point

Although POSITS arose independently of our derivation, is
there a rationale for how they encode numbers, and what are
the ramifications of the POSIT coding scheme? For instance,
how does the case p = 2, β = 16 compare to IBM hexadecimal
floating point [16], which also uses base-16 encoding? There
are two key differences: (1) POSITS encode the exponent
in signed unary rather than biased binary, allowing com-
mon exponents near zero to be represented using fewer bits.
(2) POSITS use a variable-length code for the leading digit, d`.
This code uses p bits when d` = 1 and p+ 2p − 1 bits when
d` = β− 1, i.e., fewer bits are assigned to smaller digits than
to larger ones. This is contrary to IBM floating point, which
unconditionally uses 2p = 4 bits to encode the leading digit.

With respect to exponent coding, we note that a variable-
length code that assigns short codewords to small (in mag-
nitude) exponents is more suitable from a statistical accuracy
standpoint when numbers near one are more common. Empir-
ically, this tends to be the case in numerical applications [9],
[12], e.g., because equations are often solved in dimensionless
form [10]. Such rescaling is also done to avoid under- and
overflow, especially in mixed-precision computations [5].

Regarding leading-digit coding, we note that IBM floats
suffer from wobbling accuracy [7], a phenomenon where the
relative accuracy changes abruptly (by four bits) as x traverses
a power of β and the leading digit flips from β − 1 to 1.
IBM floats further waste bit pattern 0000 (i.e., every sixteenth
codeword), which for normalized x 6= 0 never occurs as the
leading digit. In contrast, POSITS disallow d` = 0 and use
fewer bits to encode d` = 1 than d` = β−1, which eliminates
waste and largely cancels wobbling accuracy.

B. Benford Code

One question remains: Is the particular leading-digit code
employed by POSITS justifiable? If we knew the distribution
of leading digits, then we could devise a code that minimizes
the expected code length. As is well-known from information
theory, such a minimum-redundancy code is given by the
greedy Huffman construction algorithm [8]. Perhaps nonintu-
itively, the empirical probability distribution of leading digits
is often not uniform but is skewed toward small digits. This
observation was codified into Benford’s law [1], which states

Pβ(d) = logβ(d + 1)− logβ(d) = logβ(1 + 1/d) (4)

Benford’s law arose from observations of how early pages
of logarithm tables were more worn than late pages. Is this
law applicable to numerical computations? Table II lists the
probabilities given by Benford for β = 16 and those observed
for every evaluated expression in two numerical computations:
the inversion of a Vandermonde matrix and the Euler2D
shock propagation mini-application from [12]. The observed
distributions are a remarkable match with Benford’s law,
with Pearson correlation exceeding 0.98. Note that no special
rescaling of numbers was done in either application.

As a consequence of our observation of leading-digit distri-
butions, we propose the variable-length Benford code, which
we define as the canonical Huffman code [14], [15] associated
with Benford’s probability distribution given by Eq. (4). The
Benford code is uniquely defined for any radix β and is,
by construction, lexicographic. The lexicographic property
ensures that the ordering of real numbers is preserved by their
codewords. As an example, the seven Benford codewords for
β = 8 are shown in Figure 3(right).

Let β = 22
p

for some integer p ≥ 0. We conjecture that the
Benford code for a digit d = 2t + r, with 1 ≤ d ≤ β − 1,
0 ≤ r ≤ 2t−1 is given by the p-bit representation of t followed
by the t-bit representation of r. Whereas we have exhaustively
verified that this code is indeed the canonical Huffman code
for 0 ≤ p ≤ 4, which covers all the standard POSITS, we do
not yet have a proof for general p. However, we note that the
Benford distribution satisfies

2t+1−1∑
d=2t

Pβ(d) = logβ 2 = 2−p (5)

for all 0 ≤ t ≤ 2p − 1. In other words, as a group, each
of the 2p binades is equally likely, and therefore using a p-
bit prefix to first select the binade given by t is reasonable.
Moreover, P (d) = P (2d) + P (2d + 1) > P (d + 1), so the
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Fig. 3. Prefix code trees corresponding to Huffman code (left) and Benford code (right) for leading digits 1 ≤ d ≤ 7 in base β = 8. Codewords are shown
below each leaf node and have the same length for the same digit in the two codes. Node weights βP (d) given by digit probabilities P (d) are shown above
nodes and are formed as products of child weights. These weights drive the Huffman tree construction by iteratively pairing the two nodes with lowest weight.

last two numbers in a binade have a combined probability that
exceeds the probability of the first number in the binade. This
implies that a Huffman tree construction of symbols within a
binade proceeds level by level and forms a complete binary
tree. That is, a Huffman code restricted to a binade of 2t

numbers is of fixed length t. Thus, the encoding of r uses
a fixed number of t bits. These two observations are strong
evidence but not sufficient proof that the POSIT leading-digit
code also is the Benford code for arbitrary p. For instance,
the bottom-up Huffman construction generally mixes digits
from different binades, although this does not preclude that
the code used by POSITS is the equivalent canonical Huffman
code. We leave completing the proof as future work. Finally,
using Eq. (5), it is easy to show that the expected Benford
code length is (2p−2p+1)/2, which saves half a bit or more
over coding the leading digit using a fixed 2p number of bits.

IV. VARIABLE-RADIX REPRESENTATIONS: ELIAS CODES

In the previous section, we assumed that β is fixed. By
relaxing this constraint and allowing βi to vary from one digit
di to the next, we expand the space of number representations.
For simplicity, we here limit βi to powers of two, βi = 2wi ,
although this is not strictly a requirement—e.g., we could as
radices use the Fibonacci numbers. We do, however, impose
one additional constraint: β−i = βi−1, which ensures recipro-
cal symmetry. Here the subscript i refers to the place of each
digit: i = 0 is the digit just left of the radix point; i = −1 is the
digit just right of the radix point. Aside from this relaxation,
the coding scheme proceeds just as in the fixed-radix case.

Since the radix is no longer constant, we cannot speak
of a base-β exponent. Rather, we introduce the more gen-
eral concept of level, `, which relates to the number of
variable-radix factors in the product that scales a number.
Let βi = ai+1

ai
∀i ∈ Z. Here ai is a sequence point from

unbounded search (Section II-C). Then, since a0 = 1, we
have as telescoping products

a` =


∏`−1
i=0 βi if ` > 0

1 if ` = 0∏−1
i=` β

−1
i if ` < 0

, (6)

TABLE III
SEARCH SEQUENCE ai , i ≥ 0, AND CORRESPONDING RADIX WIDTH wi IN

BITS FOR SEVERAL NUMBER SYSTEMS.

Code ai wi (wi)i≥0

ELIAS γ 2i 1 (1, 1, 1, . . .)

POSIT(p) 22p×i 2p (2p, 2p, 2p, . . .)

URR 2b2
i−1c d2i−1e (1, 1, 2, 4, 8, . . .)

ELIAS δ 22i−1 2i (1, 2, 4, 8, 16, . . .)
ELIAS ω 2 ↑↑ i 2 ↑↑ i− 2 ↑↑ (i− 1) (1, 1, 2, 12, 65520, . . .)

such that x = (−1)sa`(d` + f`). For instance, a3 = β2β1β0
and a−2 = (β−1β−2)

−1 = (β0β1)
−1. Of course, when βi = β

is fixed, a` = β`. As in the case of fixed-radix codes, we
encode ` in signed unary; all other details of encoding remain
the same. Figures 1 and 2 illustrate the ELIAS δ code as an
example of a variable-radix code, with βi = 22

i

.
We parameterize a number system by the radix sequence

(βi), which due to symmetry needs only be specified for
i ≥ 0. In practice, we prefer number systems for which
each radix is a power of two, in which case the radix width
(wi) parameterizes the system, with βi = 2wi . Table III lists
example codes and their corresponding sequences (ai) and
(wi), which in all cases are simple expressions.

A. ELIAS ω

For ELIAS ω, ai = 2 ↑↑ i = 22 ↑↑(i−1) is given by
tetration [11], with 2 ↑↑−1 = 0. This results in wi being the
difference of two powers of two, e.g., w3 = 2 ↑↑ 3− 2 ↑↑ 2 =
16 − 4 = 12. Hence, the Benford code for d3 is not based
on a leading p-bit exponent, but we must resort to general
Huffman coding. Whereas the Huffman code is fixed for a
given wi and can be precomputed and stored in a lookup
table, doing so for ELIAS ω is impractical as the size of the
lookup table for w4 = 65520, which is needed to code modest
numbers x ≥ 216, already exceeds the number of atoms in the
universe. We further note that ELIAS ω is the first code we
have encountered that does not use Benford coding of the
leading digit, as can be verified by examining the codewords
for β3 = 212. This suggests that ELIAS ω is intrinsically
suboptimal (for distributions that follow Benford’s law) and
that a better number system exists that does use Benford code
for the leading digit.



V. DISCUSSION

The number systems representable in our framework encode
a number x 6= 0 in two’s complement as:
• A sign bit: 0 for nonnegative and 1 for negative numbers.
• A level (or exponent, when the radix is fixed) encoded in

signed unary that marks with one bit each significant digit
to the left of the radix point (|x| ≥ 1) or each leading
zero to the right of the radix point (|x| < 1).

• A leading digit in variable-length Benford code, which
is particularly simple when log2 log2 β is an integer.

• All trailing digits in fixed-length binary.
Each number system in this family is uniquely defined by a
sequence of radices (βi). Our number systems are universal
in the sense that each real number x corresponds to a unique
codeword. This codeword’s length is no more than a constant
factor of the length of the binary representation of x.

Our framework immediately suggests several new number
systems that deserve future investigation, some of which are
illustrated in the accuracy plot in Figure 4 for n = 32:
• A generalization of POSITS to radix widths w that are

not whole powers of two. For instance, β = 23 = 8
falls somewhere between POSIT(1) (β = 22

1

= 4) and
POSIT(2) (β = 22

2

= 16). As discussed earlier, the
Benford code for any β is unique and, when β is fixed,
can be efficiently implemented as a small lookup table.

• Generalization to the case β = 10 for decimal coding.
• The code given by wi = i+1 grows the radix more slowly

than ELIAS δ, keeping the dynamic range reasonable
while extending it over POSITS. Such a number system
avoids the need for POSITS to increase p with precision to
achieve a high enough dynamic range while also ensuring
maximum accuracy of numbers near one.

• ELIAS δ, with βi = 22
i

, can be thought of as traversing
the family POSIT(p), with p = i. A hybrid scheme caps
the radix by using βi = 22

min{i,p}
.

• A modification of ELIAS δ that repeats radices, say, k
times, to inhibit too-rapid growth: wi = 2bi/kc.

• Completely arbitrary, non-power-of-two radices.

VI. CONCLUSION

We have proposed a new framework for defining universal
number systems based on the notion of radix sequences
and tapered accuracy, in which numbers whose magnitude is
close to one are most accurately represented. Our framework
allows modeling known number systems such as POSITS,
ELIAS codes, and simple variations on IEEE floating point.
It allows for an intuitive mapping between the usual binary
representation of a number and its codeword, and allows new
number systems to be defined in a natural way by specifying
only the radix sequence. Our framework relies on the newly
introduced Benford code to encode leading digits, which is
an optimal prefix code for distributions that follow Benford’s
law. Finally, we show how POSITS make use of this code
and suggest a natural extension of the POSIT family to new
members worthy of consideration.
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Fig. 4. Relative accuracy [11] in bits vs. exponent. f(x) = F ′(x) ≈ ∆F
∆x

is the probability density with F (x) = 2−nE(x) for n bits of precision.
Natural systems [11] avoid the wobbling accuracy exemplified by IBM floats.
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