
Intel Nervana Neural Network Processor-T (NNP-T)
Fused Floating Point Many-Term Dot Product

Brian Hickmann∗, Jiasheng Chen†, Michael Rotzin‡, Andrew Yang‡, Maciej Urbanski§, and Sasikanth Avancha¶
Intel Corporation

∗Hillsboro, OR, USA, Email: brian.j.hickmann@intel.com
†Folsom, CA, USA, Email: jiasheng.chen@intel.com

‡Santa Clara, CA USA, Email: michael.rotzin@intel.com, andrew.yang@intel.com
§Gdansk, Poland, Email: maciej.urbanski@intel.com
¶Bangalore, India, Email: sasikanth.avancha@intel.com

Abstract—Intel’s Nervana Neural Network Processor for
Training (NNP-T) contains at its core an advanced floating point
dot product design to accelerate the matrix multiplication oper-
ations found in many AI applications. Each Matrix Processing
Unit (MPU) on the Intel NNP-T can process a 32x32 BFloat16
matrix multiplication every 32 cycles, accumulating the result in
single precision (FP32). To reduce hardware costs, the MPU uses
a fused many-term floating point dot product design with block
alignment of the many input terms during addition, resulting in
a unique datapath with several interesting design trade-offs. In
this paper, we describe the details of the MPU pipeline, discuss
the trade-offs made in the design, and present information on
the accuracy of the computation as compared to traditional FMA
implementations.

Index Terms—Machine learning, deep learning, tensor, matrix
multiplication, floating point dot product

I. INTRODUCTION

The rapid growth of artificial intelligence and deep learning
applications has led to an increased interest in accelerating
these workloads with hardware accelerators. The neural net-
works used by deep learning rely heavily on matrix operations,
especially the matrix multiplication operation, to perform both
training of and inference from these networks [1]. Currently
the training of deep learning workloads is commonly pro-
cessed using the IEEE Standard 754-2008 binary32 (single
precision or FP32) format [2]. However, due to the immense
computational requirement of deep learning workloads, there
has been an increased focus on using 16-bit floating point
formats such as IEEE 754 binary16 (half precision or FP16)
to reduce memory overhead and increase training performance.
As an example, NVIDIA’s Tensor Core design uses the FP16
format with an FP32 accumulator to provide a major increase
in performance for deep learning applications [3].

Intel’s Nervana Neural Network Processor for Training
applications (NNP-T) is a hardware accelerator targeted at
AI applications. Each Matrix Processing Unit (MPU) on the
Intel NNP-T contains an advanced floating point dot product
design that can process a 32x32 matrix multiplication every
32 cycles, accumulating the result in FP32. To improve perfor-
mance and reduce hardware costs, this advanced design uses
the BFloat16 (BF16) 16-bit floating point format optimized
for deep learning and AI applications [4]. In addition, the

design exploits the implementation-specific flexibility given
by the IEEE 754-2008 standard’s definition of the reduction
summation, using a block alignment of the many input terms
during addition to reduce hardware costs. While such a design
has been previously demonstrated for 4 input terms [5], this
unit is novel in that extends the design to 32 input terms.
In this paper, we describe the details of the Intel NNP-T
MPU pipeline, discuss trade-offs made in the unique dot-
product design, and present information on the accuracy of the
computation as compared to traditional FMA implementations.

II. INTEL NNP-T OVERVIEW

Intel’s Nervana Neural Network Processor for Training
(NNP-T) is a standalone PCIE-based accelerator for deep
learning and artificial intelligence training acceleration, de-
signed from the ground up to accelerate the training of larger
models and datasets with a power efficient custom architecture.
Fabricated on TSMC’s 16nm process, the chip utilizes a
single large 680mm2 die with over 27 billion transistors and
typical workload power ranging from 150-250W. As shown in
Figure 1, the heart of the design is an array of 24 Tensor
Processor Cores (TPCs) used to accelerate tensor matrix
processing, supported by four HBM2 controllers with 8 GB of
HBM2-2400 on-package memory each, 64 lanes of SERDES
communication for scale-out support, and a fourth generation
PCIE x16 interface with the host processor. All of the these
components are connected by an advanced bidirectional 2-D
mesh network supporting a total cross-section bandwidth of
2.6 TBps.

The Tensor Processor Core (TPC) is shown in detail in
Figure 2. Each TPC contains a memory unit with 2.5MB of
on-die memory, a control unit with a programmable micro-
controller, an on-die mesh router, and two Matrix Processing
Units (MPU). Each MPU is able to compute a full 32x32 BF16
matrix multiplication operation every 32 cycles, accumulating
the result using FP32 into a local partial result memory. In
addition, each MPU can perform two input vector operations
and one output vector operation per cycle on the input tensor
data and partial result, respectively, in either FP32 or BF16
format. The MPU also has support for deep learning specific
optimizations, including matrix wide reduction summation,

Spring Crest (NNP-T) SoC

HBM

HBM

HBM

HBM

PCIe/DMA

PCIe Gen 4 x16

X-bar Se
rD

e
s

x8

Se
rD

e
s

x8

Se
rD

es
 x

8

Se
rD

e
s

x8

8x ICL

H
B

M
P

H
Y

H
B

M
 M

C

TPC

TPC

TPC

TPC

TPC

H
B

M
P

H
Y

H
B

M
 M

C

H
B

M
P

H
Y

H
B

M
 M

C

H
B

M
P

H
Y

H
B

M
 M

C

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

TPC

Se
rD

es
 x

8

Se
rD

es
 x

8

Se
rD

es
 x

8

Se
rD

e
s

x8

8x ICL

X
-b

ar Se
rD

es x8

Se
rD

es x8

SerD
es x8

SerD
es x8

8x ICL

SerD
es x8

SerD
es x8

SerD
es x8

SerD
es x8

8x ICL

Fig. 1. Intel NNP-T Block Diagram

Local
Memory

Bank

Convolution
Engine

32x32
Mult Array

PreOpPreOp

Post
Ops

Partial
Product

uController

Control Path

Neighbor

32x32
Mult Array

PreOpPreOp

Post
Ops

Partial
Product

Neighbor

Neighbor

Local
Memory

Bank

Local
Memory

Bank

Fig. 2. Intel NNP-T Tensor Processor Diagram

random number generation, and programmable FP32 look-up
tables to allow emulation of arbitrary complex functions for
use as activation functions or other needs. The whole MPU is
fully pipelined to enable high utilization and throughput with
large workloads and datasets.

III. MATRIX PROCESSING UNIT DESIGN

The high level diagram of the MPU unit is shown in Figure
3. The MPU core matrix multiplication unit at the center
of the diagram must perform a fully pipelined 32x32 matrix
multiplication D=A*B+C every 32 cycles, where A and B
are input 32x32 tensors, C is the intermediate partial result
32x32 tensor, and D is the final 32x32 result tensor. The A
and B input tensors, stored in BF16, are streamed in over
two separate 512-bit (32x16-bit) busses from the memory
subsystem. Optionally, input arithmetic operations can also be
performed on A and B input tensors as they are loaded from
memory in BF16 format. The intermediate result C tensor is
either streamed from the memory unit on the dedicated ”PP”
512-bit bus or loaded from a software-managed partial product
array, to allow efficient support of matrix multiplications larger

Input Arithmetic

Engine

Input Arithmetic

Engine

...

Partial Product

Memory

Dot Product

Dot Product

Dot Product

Dot Product

+

+

+

+
Output Arithmetic

Engine

Multiplier Core
Matrix Wide

Operations

A BEW PP

Out0

Out1

C

D

Fig. 3. Intel NNP-T MPU

than 32x32. The final result tensor D is then stored to the
partial product array and optionally streamed out to memory
on the output bus. As the result is streamed to memory, it
can be optionally down converted to BF16 and additional
arithmetic vector operations performed on the result. Note that
both the input and output arithmetic units share the single
”EW” input 512-bit bus from the memory unit. Finally, the
result tensor D can also be sent to a matrix-wide operation
unit to perform reduction summations or to find matrix-wide
maximum or minimum values.

In order to perform a matrix multiplication operation, the
TPC controller begins by first streaming in the A input tensor
over 32 cycles, which is stored in a MPU internal storage array.
This storage array contains two storage contexts, allowing the
A tensor to be sent even while another operation is happening
within the multiplier core. Once the A tensor has been pre-
loaded, the B input tensor is then streamed in for 32 cycles.
In each cycle, the 32 elements of B are multiplied against the
entire stored value of the A and accumulated into a single
row or column of the result. This result is then added with
single row or column of the C tensor, either read from the
local partial result array or streamed in from the memory unit.
The final result D is then stored to the partial result array or
optionally streamed out to the memory unit on the output bus.

To ensure that the design had excellent numerical properties,
The first major design decision was to select BFloat16 (BF16)
as the numerical format over several alternatives such as
FP32, FP16, and various integer formats, as it offered the
power and area efficiency of a 16-bit format with convergence
characteristics similar to that of FP32 [6]. The BF16 format
utilizes a single sign bit, a 8-bit exponent, and a 7-bit mantissa,
encoded in the same manner as existing IEEE 754 formats. To
reduce the hardware cost, several IEEE 754 features not used
by AI applications are removed from BF16, including support
for subnormals, rounding modes other than Round to Nearest
Even (RNE), and precise exception handling [4]. During
matrix multiplications, the accumulation of BF16 products is
always done with a FP32 accumulator to improve precision.

b31 a31

Multiply

32:2 Carry-Save Compressor (37b)

Modified FP32

Adder
c0 R

N
D

b0 a0 b1 a1

Find

Max

Exponent

MultiplyMultiply ...

Align/Truncate Align/Truncate Align/Truncate

Carry Propagate

Adder

d0

Normalize

to 2's Comp to 2's Comp to 2's Comp

to Sign Magn.

Fig. 4. Intel NNP-T Dot Product Design

The second critical design decision was the microarchi-
tecture of matrix multiplication core. The multiplier core is
split into 32 dot product units, each of which calculates the
result of one ”row” of the A tensor from the local stored
copy multiplied with one ”column” of the B tensor which is
broadcast from the value being streamed in from memory. For
each dot product unit, the equation describing the computation
is show in Equation 1, where a0-31 are the elements of the A
tensor, b0-31 are the elements of the B tensor, c is the element
of the input partial result, and d is the final result.

d = a0 ∗ b0 + a1 ∗ b1 + ...+ a31 ∗ b31 + c (1)

When designing the dot product unit, we investigated sev-
eral different microarchitectures, including a chain of floating
point fused multiply add (FMA) units, a tree of floating point
adders to sum the products, and a fused design using a block
alignment scheme with a tree of integer adders. With all
of the possible architectures, we had the option of early or
late addition of the partial result to the global accumulator.
The floating point FMA and adder designs had the benefit
of matching the existing IEEE 754 compliant CPU software
instructions. However these designs incurred several additional
alignment, normalization, rounding, and full carry propagate
addition steps which added latency, power, and area to the
design, especially due to the large number of products (32)
in this design. Therefore these options were dropped in favor
of the fused design with a block alignment scheme as shown
in Figure 4. In this design, all of the 32 products are first
computed independently and then aligned in a single step
to the maximum product exponent, truncated to an internal
datapath width of 37b, and then converted to 2’s complement
form before being added using a large 32:2 carry save adder.
A final carry propagate adder computes the intermediate
result and converts back to signed magnitude form, which is
then normalized and then added to the partial product in a
traditional floating point adder to produce the final result.

The use of a block alignment scheme, while hardware
efficient, has major implications on the value of the numerical

result as compared to traditional IEEE 754 compliant floating
point FMA and adder based designs. While deep learning and
AI applications are less sensitive to numerical accuracy loss by
their nature, we attempted to minimize the impact of the block
alignment scheme with two optimizations. First, we selected a
design which adds the partial result at the end of the datapath
as opposed to including it as a 33rd input to the alignment
and reduction tree. This improves accuracy in cases where
the accumulated value grows large in comparison to the input
data, as is seen in some stages of deep learning algorithms.
Secondly, we carefully chose the internal datapath width of
37b, which is significantly wider than the 24b mantissa width
of the FP32 result, to ensure that average accuracy across many
different random input data distributions met or exceeded
that produced by traditional software matrix multiplication
implementations. Additionally, these extra bits help protect
against corner cases where cancellation due to subtraction in
the upper mantissa bits causes a large normalization shift. In
these cases, low order mantissa bits which would otherwise
only participate in rounding are shifted into the final result
mantissa. By keeping extra mantissa bits in the datapath, we
reduce the large error that results in these corner cases. Finally,
a 37b datapath allows easy future support for a 16b integer
data format inside the dot product, as 37 bits are required to
sum 32 32b-products without overflow.

During the design of the datapath, several important opti-
mizations were made to further improve the power and area of
the design. First, one major difference in this design as com-
pared to traditional floating point multiplier and FMA designs
is that early in the pipeline, the timing is actually dominated by
the maximum exponent and algnment shift amount calculation.
This allowed for the design of a mantissa multiplier optimized
for area and power as opposed to minimum timing throughput.
Similarly, the additional timing margin was used to implement
fine grain clock gating to disable the multiplier during zero
and exceptional cases, helping to reduce power in the event
of sparse input matrices. Second, to minimize the impact of
converting back to signed magnitude form after the reduction,
we implemented a specialized completion adder which specu-
latively computes both positive and negative results to reduce
the conversion latency, along with a custom leading zero
anticipator (LZA) to ensure the normalization shift amount
was computed with minimum delay. Finally, we opted to skip
rounding the intermediate reduction result and instead created
a customized floating point adder with support for an input
with a 37b mantissa. Both of these optimizations allowed us to
remove extra pipe stages from the design, saving the associated
sequential area and power costs without affecting the timing
of the final design.

The resulting design has a 9 cycle pipeline. Cycle 1 is
spent staging and decoding the input operands. Cycle 2 and 3
perform the mantissa multiplication and the exponent logic,
including finding the maximum exponent using a tree of
traditional adders/muxes and calculating the alignment shift
amount. Note that an optimized design based on the work
present in [7] was considered, but was dropped due to sched-

ule considerations. Cycle 4 performs the mantissa alignment
shifts, conversion to 2’s complement, and the first half of
the carry save addition. Cycle 5 completes the carry save
addition and peforms the final carry-propagate addition, LZA,
and conversion to signed magnitude form. Cycle 6 performs
the result normaliztion and then cycles 7 through 9 perform a
floating-point addition with the single precision accumulator
using our customized floating-point adder with support for the
wider 37b mantissa of the intermediate result.

IV. INTEL NNP-T ACCURACY COMPARISON

We performed a numerical precision analysis by looking
at the convolution operation during Resnet-50 training with
the BF16 format. We sampled all the convolution layers’ data
around epoch60, with particular interest paid to the weight
gradient calculation step because it illustrates two challenging
problem for the block aligned adder design. Firstly, it performs
very long chains of dot products which require numerical
stability during accumulation. We have found the weight gra-
dient calculation to be like an ill-defined accmulation problem
with the final result close to zero but with a relatively large
intermediate accumulator. The Intel NNP-T design addresses
this problem with the late summation of the partial results
with the global accumulator to minimize the accumulator
error. Secondly, one of the inputs is an activation gradient
which shows more frequent exponent changes [8], which could
require the block alignment adder to hold larger dynamic range
of inputs. The Intel NNP-T design addresses this problem with
our large 37-bit adder width.

For reference, we calculated the dot product ground truth
by using 500-bit floating point math and then compared the
NNP-T numerical error against two other BF16 software
implementations. The first is SEQ-FMA which uses a single
precision FMA to emulate BF16 as suggested by the Intel
BF16 white paper [4]. The other is TC4-24bT which is a
generic 4-way block aligned design with a 24bits internal
datapath width, early summation for global accumulator, and
a final result that is truncated to FP32 while output, modeled
after the design shown in [9]. For all the three models, we
perform the dot product sequentially by calling the primitive
functions without any order changes of the input data.

Table I shows the average Mean Square Error (MSE)
aggregated by layer resolutions. The NNP-T offers about an
order of magnitude more precision than SEQ-FMA across all
of the Resnet50 layers when calculating weight gradient, while
the TC4-24bT design is 3 to 6 of orders of magnitude worse.

TABLE I
AVERAGE MSE BY LAYER

SEQ-FMA NNP-T TC4-24bT
HxW=56x56, C=64 9.4E-16 1.4E-17 1.9E-11

HxW=28x28, C=128 9.2E-18 3.8E-19 1.5E-13
HxW=14x14, C=256 5.0E-19 3.9E-20 1.6E-15

HxW=7x7, C=512 7.4E-21 1.3E-21 1.5E-18

The chart in Figure 5 shows the histogram error for weight
gradient calculation of one 1x1 convolution layer with NxCx-

0%

5%

10%

15%

20%

25%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SEQ_FMA

NNP-T

TC4-24bT

Fig. 5. Histogram of the Number of Bits of Error

HxWxK=54x512x28x28x128, we use the number of bits of
error counted from LSB for the histogram as horizontal axis,
which is defined as:

Bits of Error =

{
0 if (log2 ulp < 0)

round(1 + log2 ulp) otherwise

If the error is over 15 or 16 bits it could impact the rounded
BF16 result used for weight update and if the error is over
23 or 24 bits, it means the calculated gradient could be 2x
off. From this chart, we observed that NNP-T is about 2 to
3 bits more accurate than SEQ-FMA, while TC4-24bT is up
to 9 bits worse. We also have data shows that 3x3 convlution
layer’s weight graidient calculation error is normally 1 to 3
bits better than 1x1 layer, and the layer’s error decrease when
the feature map increase.

V. CONCLUSION

The Intel NNP-T accelerator uses a novel fused floating
point dot product design with 32 input terms that is highly
area and power efficient. We described several unique design
optimizations due to its block alignment scheme. In addition,
we described design decisions made to enhance numerical pre-
cision and showed that this resulted in better average accuracy
than IEEE 754 FMA based software implementations.

REFERENCES

[1] I. Goodfellow et al., Deep Learning. The MIT Press, 2016.
[2] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.

1–70, 2008.
[3] (2017) NVIDIA Tesla V100 GPU Architecture. [Online]. Available:

http://tinyurl.com/volta-architecture-whitepaper
[4] (2018, Nov.) BFLOAT16 - Hardware Numerics Definition. [Online].

Available: https://tinyurl.com/bf16-white-paper
[5] J. Sohn and E. E. Swartzlander, “A Fused Floating-Point Four-Term Dot

Product Unit,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 3, pp. 370–378, 2016.

[6] D. D. Kalamkar et al., “A study of BFLOAT16 for deep learning
training,” CoRR, vol. abs/1905.12322, 2019. [Online]. Available:
http://arxiv.org/abs/1905.12322

[7] H. Kaul et al., “Optimized fused floating-point many-term dot-product
hardware for machine learning accelerators,” in 2019 IEEE 26th Sympo-
sium on Computer Arithmetic (ARITH), 2019, pp. 84–87.

[8] V. Popescu et al., “Flexpoint: Predictive Numerics for Deep Learning,”
in 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH), 2018,
pp. 1–4.

[9] B. Hickmann and D. Bradford, “Experimental Analysis of Matrix Multi-
plication Functional Units,” in 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), 2019, pp. 116–119.

