
Automatic Design Space Exploration
for an Error Tolerant Application

Samuel Coward
Visual Technologies Team

Intel Corporation
Folsom, USA

samuel.coward@intel.com

Theo Drane
Visual Technologies Team

Intel Corporation
Folsom, USA

theo.drane@intel.com

Yoav Harel
Visual Technologies Team

Intel Corporation
Folsom, USA

yoav.harel@intel.com

Abstract—Creating optimized hardware for error tolerant ap-
plications presents significant challenges as well as opportunities.
Many algorithms in computer graphics & vision are error
tolerant, as their application level correctness ultimately rests
on human perception. This error tolerance can be exploited in
reducing hardware implementation cost. The challenge is how to
explore the space of application level correct designs to determine
the optimized hardware architecture. This paper puts forward
an approach to automatically explore the space which maximally
exploits the acceptable error to minimize hardware cost for a
particular graphics algorithm - Level-Of-Detail. Results, so far,
have shown a 26% hardware area improvement.

Index Terms—floating-point, numerical analysis, power-
efficient, design automation, approximate computing, multiple-
precision, computer graphics, accuracy hardware tradeoffs

I. INTRODUCTION

In the design of fixed-functions in application-specific inte-
grated circuits (ASICs) there are a myriad of considerations.
The quality of service provided by the hardware function
is determined by its bit-accurate functionality as well as
its throughput, latency, area and power consumption. While
certain algorithms have a universally accepted specification,
e.g. the IEEE standard for floating-point arithmetic, others
may have an acceptable range of allowable answers or even
expected outcomes for only a limited set of allowable in-
puts. The latter categories are considered as error tolerant
applications and present a considerable challenge to standard
hardware design methodologies. Designers and architects must
navigate four layers of choices; algorithm, number format(s),
precision(s) and accuracies. The algorithm has to be chosen
which has the potential to meet the application requirements.
Once the algorithm is chosen, which number format(s) to use
throughout the calculation is selected. Then the precision of
every internal signal must be chosen and finally the accuracy
that each operation must provide. Note that every one of these
four layers of choices impacts bit-accurate functionality as
well as hardware implementation cost. Given the incredible
range of hardware designs that these choices offer, automatic
design exploration that explores all four layers is the ultimate
goal of design automation. Automatically determining appli-
cation level correctness may itself be infeasible; for design
automation to be possible, a set of executable metrics would
need creating. Such metrics may be sufficient for application

level correctness but not necessary, however they would enable
automatic design space exploration.

In this paper, we focus on the question of precision for a
floating-point design in a graphics application. Here precision
changes have non trivial effects on design accuracy and
hardware implementation cost.

II. RELATED WORK

The key features of such design exploration are:

• Application Level Correctness
- how the error analysis is performed

• Hardware Implementation Cost
- whether this be actual synthesis or models of synthesis

• Parameter Space Exploration
- having parametrized the space of designs, how the space
is explored in finding optimized designs

In terms of error analysis, significant work derives from sim-
ulating designs with higher precision and extracting minimum,
maximum and standard deviations statistics of variables in or-
der to select required precisions, such as [1]. Such approaches
fail to capture corner case events, for fixed-point designs, inter-
val arithmetic (IA) has been used to propagate variable ranges
to determine necessary precisions. IA can be pessimistic due to
correlation between variables, e.g. x−x would be considered
to reside in a interval containing more than just 0. Overcoming
this limitation, Affine Arithmetic was introduced (AA) which
keeps first order correlations between variables, [2]. This has
been further improved by considering Arithmetic Transforms
(AT) which expands AA to include higher order terms while
still remaining a linear transformation, [3]. These functions
can be efficiently propagated through the design maintaining
certain correlation information to provide bounds on the vari-
able values. However, these bounds may still not be tight and
these techniques are increasingly computationally expensive.
To solve this, SAT and SAT-Modulo-Theory (SMT) have been
used to prove or dis-prove bounds are achievable, and thus
can be used to orchestrate between IA, AA and AT, [4], [5].
Precision loss has also been considered as introducing random
variables into the computation, [6], [7], [8]. Where AA and
AT seek to capture correlations, full automatic differentiation
has been explored in [9].

In terms of hardware implementation cost, surrogate cost
metrics which are functions of the precisions have been used
for fixed-point designs; from the total number of bits in all
internal variables, [10], functions linear in the bit-widths, [1],
[7] to the total number of partial products bits in all adders
and multipliers, [2], [8]. More advanced function fitting using
weighted Chebyshev polynomials have been used to model
area, delay and energy, [6]. In [11], the frameworks consisted
of taking the design through to place and route and then
power estimation. The challenge here is the ability to correctly
discern whether one particular parametrization is superior to
another without the need for computationally expensive and
time consuming synthesis.

In terms of parameter space exploration iterative methods
have been explored. For initialization, the design which uses
the smallest same precision through-out has been used, [1],
[6]. Conversely, one approach first maximizes all precisions
and then one precision, p1, is minimized while still main-
taining application level acceptability. This is repeated for all
parameters, the resultant set pi is a design which is likely to
be incorrect at an application level, but presents a useful seed
point, [1]. For the remainder of this paper, the term valid and
invalid will be used for parametrizations that are application
level acceptable and unacceptable respectively.

For iterations within the parameter space, genetic algorithms
and simulated annealing have been explored in [1], [6], [12],
[8], [11]. Machine learning optimizers with particle swarm
optimization has been explored in [13]. Search directions
determined by error effect and expected improvements in
hardware cost have been seen in [1]. Fork free areas in the
data flow graph of the algorithm have been exploited in [10],
this accelerates the exploration by reducing the dimensionality
of the search space.

III. THE APPLICATION: LEVEL-OF-DETAIL

For our application, we turned to a computer graphics
application regarding the rendering of textured objects, [14].
As the view point changes and objects go in and out of
view, the level of visible texture detail changes drastically.
Real-time minimization of the texture is too computationally
expensive. The solution is to store multiple copies of the
texture at different levels of minimization, these are referred
to as MipMap Levels. Then, depending on the object position
and orientation, the two relevant minimization levels are
determined and averaging performed between them, Fig. 1.

How the MipMap levels need to be processed can be en-
capsulated in a single fixed-point number, which is called the
level-of-detail (LOD). Given the LOD is used for subsequent
filtering, error in its calculation can certainly be tolerated. As a
result, industrial compliance tests for such computer graphics
hardware, allow for some error. The LOD can be calculated
from how the texture space is mapped to the screen pixel
space. This potentially complex mapping is assumed, to reduce
computational complexity, to be affine, Fig. 2.

The LOD is derived from the linear transformation matrix.
Such hardware has hundreds of input bits and a 12-bit fixed-

Fig. 1. MipMap Levels.

Fig. 2. Texture Mapping.

point output. Given the application and the drastic reduction in
bit count, this is a highly error tolerant application. The form
of LOD algorithm chosen for this design exploration work
has 20 internal precisions, containing a range of floating-point
operations, Fig. 3.

Fig. 3. Level-Of-Detail Data Flow Graph.

IV. PROPOSED FRAMEWORK

Following such approaches as in [13], our proposed
framework provides a method for exploring the parameter
space. Our exploration needs to determine whether a given
parametrization is valid and its hardware implementation cost.
To overcome run-time limitations of logic synthesis and chal-
lenges in exploring the parameter space, our framework also
introduces two novel contributions:

• Hardware Implementation Cost - a hybrid of actual
synthesis and a model of synthesis results (a proxy).

• Parameter Space Exploration - a set of initialization
points is constructed and a directed walk which is guaran-
teed to remain on the boundary of valid parametrizations.

The overall framework can be found in Fig. 4.

Fig. 4. Framework for Parameter Space Exploration via Directed Walks.

The details of how validity, hardware implementation cost
and parameter space exploration is determined now follows.

A. Application Level Correctness (Validity)

The LOD hardware that is being optimized can be consid-
ered to be of the form:

f(x,p). (1)

Where x are the design inputs and p are the set of mantissa
width values that parametrize the design. An existing imple-
mentation sets all mantissa widths to be 23 (matching single
precision floating-point), denoted as pmax. The application
requires 8 fractional bits of precision when averaging between
mipmap levels, hence the LOD value has 8 fractional bits. For
this proof of concept work, the value of f(x,pmax) will be
considered to be the reference value and acceptable deviation
can be no worse than 1 unit in the last place, 2−8 in this case.
Thus a parametrization p is valid if:

|f(x,pmax)− f(x,p)| < 2−8 ∀x. (2)

Python 2.7.15’s scipy.optimize.minimize function was used to
determine the extrema of f(x,pmax) − f(x,p) and hence
determine whether the validity condition was satisfied.

B. Hardware Implementation Cost

With a 20 dimensional parameter space and a logic synthesis
of a particular parametrization taking between 3-4 hours of
run-time, a hybrid of both [6] and [11] was taken; mixing
actual synthesis with models of synthesis. Total gate count was
chosen as the hardware implementation cost metric of interest.
For significantly different parts of the parameter space, a full
logic synthesis was performed. For localized changes to the
parameter values a model of total gate count was used. Firstly
multiple synthesis runs were performed to establish how each
component within the LOD algorithm responded to changes
in delay and mantissa width. The result were the curves found
in Fig. 5.

From these sample data points, linear regression was per-
formed to create an analytic gate count function G, quadratic

Fig. 5. Area-Delay Curves for Floating-Point Addition and Multiplication.

in the mantissa width p and inverse quadratic in delay d which
determined the constants ai:

G(d, p) = a0 +
a1
d

+
a2
d2

+ a3p+
a4p

d
+
a5p

d2

+ a6p
2 +

a7p
2

d
+
a8p

2

d2
. (3)

Once an actual synthesis run is performed for parametriza-
tion p, the delays over each component is extracted di and
a model for the expected gate count difference by changing
parametrization p to p′ is (summing over all the components
in the design): ∑

i

Gi(di, p
′
i)−Gi(di, pi). (4)

C. Parameter Space Exploration

The optimal design will be found on the boundary of valid
space, as this is where the error tolerance will be maximally
exploited and reduction of any particular mantissa width will
result in an invalid design. To explore this boundary, a set
of qualitatively distinct initialization points are sought. First
considering the design defined by pmax; a point on the
boundary can be generated by taking one parameter, reducing
it until the design is only just valid and then repeating for all
other parameters in turn. Given the design has 20 parameters,
this process could generate 20! ≈ 1018 initialization points by
considering the parameters in different orders. Generating all
such initializations is infeasible, so a method for determining
qualitatively different elements within this set is required.
This is achieved by partitioning the parameters, as in Fig.
6 into 5 connected groups. From these groups, 5! = 120
initialization points are created by considering all possible
orderings of these groups during the minimization process.
Within each group a fixed ordering of minimization occurs.
This approach can deliver qualitatively different initialization
points, independent of the number of parameters.

Having chosen the initialization parametrizations, directed
walks from all of these points are considered in parallel.
From a parametrization p, a logic synthesis run is performed
and the delays across each component are extracted di. The
analytic gate count function is used to determine the best
search direction:

−∇p

∑
i

Gi(di, pi). (5)

Fig. 6. Parameter Graph for the LOD Calculation.

This direction should point into invalid space. Direction vec-
tors whose elements sum to zero are likely to move along the
boundary. Hence an offset is added to (5) such that the sum
of its elements is 0. The updated parametrization is then:

p′ = p+ α

(
offset1−∇p

∑
i

Gi(di, pi)

)
. (6)

Where α determines how far in the new search direction to
travel. Given the edge of valid space is of interest, α is chosen
to guarantee that p′ lies on the boundary.

V. THE RESULT

The generated framework was a fully closed loop optimiza-
tion; interim results evolved 120 initialization points across 8
iterations of the directed walking algorithm. The gate count
for 8 initialization points can be found in Fig. 7. From these
interim results, a parametrization with 53 fewer mantissa
bits than the original design was found; whose gate count
was reduced by 25.7%. The growth of gate count during
the iterations present in this figure indicates that the steps
being taken exceed the trust region of the analytic gate count
function. The best parametrization came from one of the
initialization points.

Fig. 7. Gate Count Results for 8 Directed Walks.

VI. CONCLUSION & FUTURE WORK

This paper has put forward a framework for precision
optimization for error tolerant hardware consisting of directed
walks from a set of initial points which explore the boundary
of application level acceptable designs. Future work includes

improving the robustness of the error modeling and error
extrema computation. The directed walks are currently ex-
tended beyond the trust region of the analytic gate count
function; further work is required to establish an improved
interplay between logic synthesis and analytic models of the
expected gate count. The interim results suggest that exploring
more of the initialization point space may deliver a more
robust optimization strategy. Further work is required on how
best to perform parameter clustering for initial point creation.
The framework can be extended to consider more advanced
parametrizations of the design space to include accuracies and
other number formats. It is hoped that the framework presented
in this paper will contribute to the development of general
robust frameworks for error tolerant hardware optimization.

REFERENCES

[1] M. . Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word
length optimization procedures,” in 2002 IEEE International Symposium
on Circuits and Systems. Proceedings (Cat. No.02CH37353), vol. 2, May
2002, p. II.

[2] D. . Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and
G. A. Constantinides, “Accuracy-guaranteed bit-width optimization,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 1990–2000, Oct 2006.

[3] Y. Pang, K. Radecka, and Z. Zilic, “An efficient hybrid engine to perform
range analysis and allocate integer bit-widths for arithmetic circuits,” in
16th Asia and South Pacific Design Automation Conference (ASP-DAC
2011), Jan 2011, pp. 455–460.

[4] Y. Pang and K. Radecka, “An efficient algorithm of performing range
analysis for fixed-point arithmetic circuits based on sat checking,” in
2011 IEEE International Symposium of Circuits and Systems (ISCAS),
May 2011, pp. 1736–1739.

[5] A. B. Kinsman and N. Nicolici, “Finite precision bit-width allocation
using sat-modulo theory,” in 2009 Design, Automation Test in Europe
Conference Exhibition, April 2009, pp. 1106–1111.

[6] A. Ahmadi and M. Zwolinski, “A symbolic noise analysis approach
to word-length optimization in dsp hardware,” in 2007 International
Symposium on Integrated Circuits, Sep. 2007, pp. 457–460.

[7] Yu Pu and Yajun Ha, “An automated, efficient and static bit-width
optimization methodology towards maximum bit-width-to-error tradeoff
with affine arithmetic model,” in Asia and South Pacific Conference on
Design Automation, 2006., Jan 2006, p. 6.

[8] A. Ahmadi and M. Zwolinski, “Area word-length trade off in dsp algo-
rithm implementation and optimization,” in 2005 The 2nd IEE/EURASIP
Conference on DSPenabledRadio (Ref. No. 2005/11086), Sep. 2005,
p. 16.

[9] A. A. Gaffar, O. Mencer, W. Luk, P. Y. K. Cheung, and N. Shirazi,
“Floating-point bitwidth analysis via automatic differentiation,” in 2002
IEEE International Conference on Field-Programmable Technology,
2002. (FPT). Proceedings., Dec 2002, pp. 158–165.

[10] J. Chung and L. Kim, “Bit-width optimization by divide-and-conquer
for fixed-point digital signal processing systems,” IEEE Transactions on
Computers, vol. 64, no. 11, pp. 3091–3101, Nov 2015.

[11] A. A. Gaffar, J. A. Clarke, and G. A. Constantinides, “Powerbit - power
aware arithmetic bit-width optimization,” in 2006 IEEE International
Conference on Field Programmable Technology, Dec 2006, pp. 289–
292.

[12] M. . Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic word
length determination method,” in ISCAS 2001. The 2001 IEEE Interna-
tional Symposium on Circuits and Systems (Cat. No.01CH37196), vol. 5,
May 2001, pp. 53–56.

[13] M. Kurek and W. Luk, “Parametric reconfigurable designs with ma-
chine learning optimizer,” in 2012 International Conference on Field-
Programmable Technology, Dec 2012, pp. 109–112.

[14] P. S. Heckbert, “Fundamentals of texture mapping and image
warping,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/CSD-89-516, Jun 1989. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html

